![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecelqsg | Structured version Visualization version GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ [𝐵]𝑅 = [𝐵]𝑅 | |
2 | eceq1 8687 | . . . 4 ⊢ (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅) | |
3 | 2 | rspceeqv 3596 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
4 | 1, 3 | mpan2 690 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
5 | ecexg 8653 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → [𝐵]𝑅 ∈ V) | |
6 | elqsg 8708 | . . . 4 ⊢ ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) |
8 | 7 | biimpar 479 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
9 | 4, 8 | sylan2 594 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 Vcvv 3446 [cec 8647 / cqs 8648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ec 8651 df-qs 8655 |
This theorem is referenced by: ecelqsi 8713 qliftlem 8738 erov 8754 eroprf 8755 sylow2a 19402 sylow2blem1 19403 sylow2blem2 19404 cldsubg 23465 tgjustr 27419 |
Copyright terms: Public domain | W3C validator |