MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsg Structured version   Visualization version   GIF version

Theorem ecelqsg 8347
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . 3 [𝐵]𝑅 = [𝐵]𝑅
2 eceq1 8322 . . . 4 (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅)
32rspceeqv 3642 . . 3 ((𝐵𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
41, 3mpan2 687 . 2 (𝐵𝐴 → ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅)
5 ecexg 8288 . . . 4 (𝑅𝑉 → [𝐵]𝑅 ∈ V)
6 elqsg 8343 . . . 4 ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
75, 6syl 17 . . 3 (𝑅𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅))
87biimpar 478 . 2 ((𝑅𝑉 ∧ ∃𝑥𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
94, 8sylan2 592 1 ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  Vcvv 3500  [cec 8282   / cqs 8283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-xp 5560  df-cnv 5562  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ec 8286  df-qs 8290
This theorem is referenced by:  ecelqsi  8348  qliftlem  8373  erov  8389  eroprf  8390  sylow2a  18680  sylow2blem1  18681  sylow2blem2  18682  cldsubg  22653  tgjustr  26193
  Copyright terms: Public domain W3C validator