| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecelqsg | Structured version Visualization version GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecelqsg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ [𝐵]𝑅 = [𝐵]𝑅 | |
| 2 | eceq1 8767 | . . . 4 ⊢ (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅) | |
| 3 | 2 | rspceeqv 3629 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
| 5 | ecexg 8732 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → [𝐵]𝑅 ∈ V) | |
| 6 | elqsg 8791 | . . . 4 ⊢ ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) |
| 8 | 7 | biimpar 477 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| 9 | 4, 8 | sylan2 593 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3464 [cec 8726 / cqs 8727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8730 df-qs 8734 |
| This theorem is referenced by: ecelqsi 8796 qliftlem 8821 erov 8837 eroprf 8838 sylow2a 19610 sylow2blem1 19611 sylow2blem2 19612 cldsubg 24084 tgjustr 28437 |
| Copyright terms: Public domain | W3C validator |