![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecelqsg | Structured version Visualization version GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecelqsg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ [𝐵]𝑅 = [𝐵]𝑅 | |
2 | eceq1 8769 | . . . 4 ⊢ (𝑥 = 𝐵 → [𝑥]𝑅 = [𝐵]𝑅) | |
3 | 2 | rspceeqv 3633 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 = [𝐵]𝑅) → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
4 | 1, 3 | mpan2 689 | . 2 ⊢ (𝐵 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) |
5 | ecexg 8735 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → [𝐵]𝑅 ∈ V) | |
6 | elqsg 8793 | . . . 4 ⊢ ([𝐵]𝑅 ∈ V → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅)) |
8 | 7 | biimpar 476 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 [𝐵]𝑅 = [𝑥]𝑅) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
9 | 4, 8 | sylan2 591 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 Vcvv 3473 [cec 8729 / cqs 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 df-qs 8737 |
This theorem is referenced by: ecelqsi 8798 qliftlem 8823 erov 8839 eroprf 8840 sylow2a 19581 sylow2blem1 19582 sylow2blem2 19583 cldsubg 24035 tgjustr 28298 |
Copyright terms: Public domain | W3C validator |