![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmquskerlem2 | Structured version Visualization version GIF version |
Description: Lemma for ghmqusker 19237. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
Ref | Expression |
---|---|
ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
ghmquskerlem2.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) |
Ref | Expression |
---|---|
ghmquskerlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmquskerlem2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) | |
2 | ghmqusker.q | . . . . . 6 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
4 | eqidd 2726 | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | ovexd 7448 | . . . . 5 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
6 | ghmqusker.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
7 | ghmgrp1 19171 | . . . . . 6 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
9 | 3, 4, 5, 8 | qusbas 17521 | . . . 4 ⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
10 | 1, 9 | eleqtrrd 2828 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
11 | elqsg 8780 | . . . 4 ⊢ (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))) | |
12 | 11 | biimpa 475 | . . 3 ⊢ ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)) |
13 | 1, 10, 12 | syl2anc 582 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)) |
14 | ghmqusker.k | . . . . . . . . . 10 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
15 | ghmqusker.1 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝐻) | |
16 | 15 | ghmker 19195 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺)) |
17 | nsgsubg 19112 | . . . . . . . . . . 11 ⊢ ((◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺) → (◡𝐹 “ { 0 }) ∈ (SubGrp‘𝐺)) | |
18 | 6, 16, 17 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈ (SubGrp‘𝐺)) |
19 | 14, 18 | eqeltrid 2829 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
20 | eqid 2725 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
21 | eqid 2725 | . . . . . . . . . 10 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
22 | 20, 21 | eqger 19132 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
24 | 23 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
25 | simplr 767 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ (Base‘𝐺)) | |
26 | ecref 8762 | . . . . . . 7 ⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾)) | |
27 | 24, 25, 26 | syl2anc 582 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾)) |
28 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑌 = [𝑥](𝐺 ~QG 𝐾)) | |
29 | 27, 28 | eleqtrrd 2828 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ 𝑌) |
30 | 28 | fveq2d 6894 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
31 | 6 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
32 | ghmqusker.j | . . . . . . 7 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
33 | 15, 31, 14, 2, 32, 25 | ghmquskerlem1 19233 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
34 | 30, 33 | eqtrd 2765 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑌) = (𝐹‘𝑥)) |
35 | 29, 34 | jca 510 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥))) |
36 | 35 | expl 456 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥)))) |
37 | 36 | reximdv2 3154 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾) → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥))) |
38 | 13, 37 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 Vcvv 3463 {csn 4625 ∪ cuni 4904 ↦ cmpt 5227 ◡ccnv 5672 “ cima 5676 ‘cfv 6543 (class class class)co 7413 Er wer 8715 [cec 8716 / cqs 8717 Basecbs 17174 0gc0g 17415 /s cqus 17481 Grpcgrp 18889 SubGrpcsubg 19074 NrmSGrpcnsg 19075 ~QG cqg 19076 GrpHom cghm 19166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17417 df-imas 17484 df-qus 17485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-nsg 19078 df-eqg 19079 df-ghm 19167 |
This theorem is referenced by: ghmquskerlem3 19236 ghmqusker 19237 lmhmqusker 33172 rhmquskerlem 33185 |
Copyright terms: Public domain | W3C validator |