MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem2 Structured version   Visualization version   GIF version

Theorem ghmquskerlem2 19273
Description: Lemma for ghmqusker 19275. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmquskerlem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝑥, 0   𝑥,𝑞,𝐹   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑄,𝑞,𝑥   𝑌,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem2
StepHypRef Expression
1 ghmquskerlem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
4 eqidd 2737 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7445 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
6 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19206 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17564 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
101, 9eleqtrrd 2838 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
11 elqsg 8787 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)))
1211biimpa 476 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
131, 10, 12syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
14 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
15 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
1615ghmker 19230 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
17 nsgsubg 19146 . . . . . . . . . . 11 ((𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺) → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
186, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
1914, 18eqeltrid 2839 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
20 eqid 2736 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2736 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
2220, 21eqger 19166 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2319, 22syl 17 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2423ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
25 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ (Base‘𝐺))
26 ecref 8769 . . . . . . 7 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
2724, 25, 26syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
28 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑌 = [𝑥](𝐺 ~QG 𝐾))
2927, 28eleqtrrd 2838 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥𝑌)
3028fveq2d 6885 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
316ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
32 ghmqusker.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3315, 31, 14, 2, 32, 25ghmquskerlem1 19271 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
3430, 33eqtrd 2771 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐹𝑥))
3529, 34jca 511 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3635expl 457 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3736reximdv2 3151 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3813, 37mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  cima 5662  cfv 6536  (class class class)co 7410   Er wer 8721  [cec 8722   / cqs 8723  Basecbs 17233  0gc0g 17458   /s cqus 17524  Grpcgrp 18921  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110   GrpHom cghm 19200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201
This theorem is referenced by:  ghmquskerlem3  19274  ghmqusker  19275  lmhmqusker  33437  rhmquskerlem  33445
  Copyright terms: Public domain W3C validator