MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmquskerlem2 Structured version   Visualization version   GIF version

Theorem ghmquskerlem2 19197
Description: Lemma for ghmqusker 19199. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmquskerlem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝑥, 0   𝑥,𝑞,𝐹   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑄,𝑞,𝑥   𝑌,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem2
StepHypRef Expression
1 ghmquskerlem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
4 eqidd 2732 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7381 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
6 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19130 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17449 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
101, 9eleqtrrd 2834 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
11 elqsg 8688 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)))
1211biimpa 476 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
131, 10, 12syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
14 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
15 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
1615ghmker 19154 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
17 nsgsubg 19070 . . . . . . . . . . 11 ((𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺) → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
186, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
1914, 18eqeltrid 2835 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
20 eqid 2731 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2731 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
2220, 21eqger 19090 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2319, 22syl 17 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2423ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
25 simplr 768 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ (Base‘𝐺))
26 ecref 8667 . . . . . . 7 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
2724, 25, 26syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
28 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑌 = [𝑥](𝐺 ~QG 𝐾))
2927, 28eleqtrrd 2834 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥𝑌)
3028fveq2d 6826 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
316ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
32 ghmqusker.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3315, 31, 14, 2, 32, 25ghmquskerlem1 19195 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
3430, 33eqtrd 2766 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐹𝑥))
3529, 34jca 511 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3635expl 457 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3736reximdv2 3142 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3813, 37mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  {csn 4573   cuni 4856  cmpt 5170  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346   Er wer 8619  [cec 8620   / cqs 8621  Basecbs 17120  0gc0g 17343   /s cqus 17409  Grpcgrp 18846  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035   GrpHom cghm 19124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125
This theorem is referenced by:  ghmquskerlem3  19198  ghmqusker  19199  lmhmqusker  33382  rhmquskerlem  33390
  Copyright terms: Public domain W3C validator