Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghmquskerlem2 Structured version   Visualization version   GIF version

Theorem ghmquskerlem2 32518
Description: Lemma for ghmqusker 32520. (Contributed by Thierry Arnoux, 14-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmquskerlem2.y (𝜑𝑌 ∈ (Base‘𝑄))
Assertion
Ref Expression
ghmquskerlem2 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Distinct variable groups:   𝑥, 0   𝑥,𝑞,𝐹   𝐺,𝑞,𝑥   𝐻,𝑞,𝑥   𝐽,𝑞,𝑥   𝐾,𝑞,𝑥   𝑄,𝑞,𝑥   𝑌,𝑞,𝑥   𝜑,𝑞,𝑥
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmquskerlem2
StepHypRef Expression
1 ghmquskerlem2.y . . 3 (𝜑𝑌 ∈ (Base‘𝑄))
2 ghmqusker.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
32a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
4 eqidd 2733 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 ovexd 7440 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
6 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmgrp1 19088 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
93, 4, 5, 8qusbas 17487 . . . 4 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
101, 9eleqtrrd 2836 . . 3 (𝜑𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
11 elqsg 8758 . . . 4 (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)))
1211biimpa 477 . . 3 ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
131, 10, 12syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))
14 ghmqusker.k . . . . . . . . . 10 𝐾 = (𝐹 “ { 0 })
15 ghmqusker.1 . . . . . . . . . . . 12 0 = (0g𝐻)
1615ghmker 19112 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
17 nsgsubg 19032 . . . . . . . . . . 11 ((𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺) → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
186, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (𝐹 “ { 0 }) ∈ (SubGrp‘𝐺))
1914, 18eqeltrid 2837 . . . . . . . . 9 (𝜑𝐾 ∈ (SubGrp‘𝐺))
20 eqid 2732 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2732 . . . . . . . . . 10 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
2220, 21eqger 19052 . . . . . . . . 9 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2319, 22syl 17 . . . . . . . 8 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2423ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
25 simplr 767 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ (Base‘𝐺))
26 ecref 31920 . . . . . . 7 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
2724, 25, 26syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾))
28 simpr 485 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑌 = [𝑥](𝐺 ~QG 𝐾))
2927, 28eleqtrrd 2836 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥𝑌)
3028fveq2d 6892 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
316ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
32 ghmqusker.j . . . . . . 7 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
3315, 31, 14, 2, 32, 25ghmquskerlem1 32516 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
3430, 33eqtrd 2772 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑌) = (𝐹𝑥))
3529, 34jca 512 . . . 4 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥)))
3635expl 458 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥𝑌 ∧ (𝐽𝑌) = (𝐹𝑥))))
3736reximdv2 3164 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾) → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥)))
3813, 37mpd 15 1 (𝜑 → ∃𝑥𝑌 (𝐽𝑌) = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  {csn 4627   cuni 4907  cmpt 5230  ccnv 5674  cima 5678  cfv 6540  (class class class)co 7405   Er wer 8696  [cec 8697   / cqs 8698  Basecbs 17140  0gc0g 17381   /s cqus 17447  Grpcgrp 18815  SubGrpcsubg 18994  NrmSGrpcnsg 18995   ~QG cqg 18996   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084
This theorem is referenced by:  ghmquskerlem3  32519  ghmqusker  32520  lmhmqusker  32522  rhmquskerlem  32531
  Copyright terms: Public domain W3C validator