| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmquskerlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ghmqusker 19219. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| ghmqusker.1 | ⊢ 0 = (0g‘𝐻) |
| ghmqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| ghmqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| ghmqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| ghmqusker.j | ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
| ghmquskerlem2.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) |
| Ref | Expression |
|---|---|
| ghmquskerlem2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmquskerlem2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) | |
| 2 | ghmqusker.q | . . . . . 6 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 4 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 5 | ovexd 7422 | . . . . 5 ⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) | |
| 6 | ghmqusker.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
| 7 | ghmgrp1 19150 | . . . . . 6 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 9 | 3, 4, 5, 8 | qusbas 17508 | . . . 4 ⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 10 | 1, 9 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 11 | elqsg 8737 | . . . 4 ⊢ (𝑌 ∈ (Base‘𝑄) → (𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ↔ ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾))) | |
| 12 | 11 | biimpa 476 | . . 3 ⊢ ((𝑌 ∈ (Base‘𝑄) ∧ 𝑌 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)) |
| 13 | 1, 10, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾)) |
| 14 | ghmqusker.k | . . . . . . . . . 10 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
| 15 | ghmqusker.1 | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝐻) | |
| 16 | 15 | ghmker 19174 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺)) |
| 17 | nsgsubg 19090 | . . . . . . . . . . 11 ⊢ ((◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺) → (◡𝐹 “ { 0 }) ∈ (SubGrp‘𝐺)) | |
| 18 | 6, 16, 17 | 3syl 18 | . . . . . . . . . 10 ⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈ (SubGrp‘𝐺)) |
| 19 | 14, 18 | eqeltrid 2832 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 20 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 21 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) | |
| 22 | 20, 21 | eqger 19110 | . . . . . . . . 9 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 24 | 23 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 25 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ (Base‘𝐺)) | |
| 26 | ecref 8716 | . . . . . . 7 ⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾)) | |
| 27 | 24, 25, 26 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ [𝑥](𝐺 ~QG 𝐾)) |
| 28 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑌 = [𝑥](𝐺 ~QG 𝐾)) | |
| 29 | 27, 28 | eleqtrrd 2831 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝑥 ∈ 𝑌) |
| 30 | 28 | fveq2d 6862 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑌) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
| 31 | 6 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 32 | ghmqusker.j | . . . . . . 7 ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) | |
| 33 | 15, 31, 14, 2, 32, 25 | ghmquskerlem1 19215 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
| 34 | 30, 33 | eqtrd 2764 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑌) = (𝐹‘𝑥)) |
| 35 | 29, 34 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥))) |
| 36 | 35 | expl 457 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐺) ∧ 𝑌 = [𝑥](𝐺 ~QG 𝐾)) → (𝑥 ∈ 𝑌 ∧ (𝐽‘𝑌) = (𝐹‘𝑥)))) |
| 37 | 36 | reximdv2 3143 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝐺)𝑌 = [𝑥](𝐺 ~QG 𝐾) → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥))) |
| 38 | 13, 37 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 Er wer 8668 [cec 8669 / cqs 8670 Basecbs 17179 0gc0g 17402 /s cqus 17468 Grpcgrp 18865 SubGrpcsubg 19052 NrmSGrpcnsg 19053 ~QG cqg 19054 GrpHom cghm 19144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 |
| This theorem is referenced by: ghmquskerlem3 19218 ghmqusker 19219 lmhmqusker 33388 rhmquskerlem 33396 |
| Copyright terms: Public domain | W3C validator |