| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsecl | Structured version Visualization version GIF version | ||
| Description: Membership in a quotient set by an equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| elqsecl | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8737 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ )) | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | dfec2 8674 | . . . . 5 ⊢ (𝑥 ∈ V → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) | |
| 4 | 2, 3 | mp1i 13 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) |
| 5 | 4 | eqeq2d 2740 | . . 3 ⊢ (𝐵 ∈ 𝑋 → (𝐵 = [𝑥] ∼ ↔ 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| 6 | 5 | rexbidv 3157 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| 7 | 1, 6 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: eclclwwlkn1 30004 |
| Copyright terms: Public domain | W3C validator |