| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsecl | Structured version Visualization version GIF version | ||
| Description: Membership in a quotient set by an equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| elqsecl | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg 8776 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ )) | |
| 2 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | dfec2 8716 | . . . . 5 ⊢ (𝑥 ∈ V → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) | |
| 4 | 2, 3 | mp1i 13 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) |
| 5 | 4 | eqeq2d 2745 | . . 3 ⊢ (𝐵 ∈ 𝑋 → (𝐵 = [𝑥] ∼ ↔ 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| 6 | 5 | rexbidv 3162 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| 7 | 1, 6 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 Vcvv 3457 class class class wbr 5116 [cec 8711 / cqs 8712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-xp 5657 df-cnv 5659 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ec 8715 df-qs 8719 |
| This theorem is referenced by: eclclwwlkn1 29988 |
| Copyright terms: Public domain | W3C validator |