MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsecl Structured version   Visualization version   GIF version

Theorem elqsecl 8811
Description: Membership in a quotient set by an equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
elqsecl (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑦)   𝑊(𝑦)   𝑋(𝑦)

Proof of Theorem elqsecl
StepHypRef Expression
1 elqsg 8808 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = [𝑥] ))
2 vex 3484 . . . . 5 𝑥 ∈ V
3 dfec2 8748 . . . . 5 (𝑥 ∈ V → [𝑥] = {𝑦𝑥 𝑦})
42, 3mp1i 13 . . . 4 (𝐵𝑋 → [𝑥] = {𝑦𝑥 𝑦})
54eqeq2d 2748 . . 3 (𝐵𝑋 → (𝐵 = [𝑥] 𝐵 = {𝑦𝑥 𝑦}))
65rexbidv 3179 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = [𝑥] ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
71, 6bitrd 279 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  Vcvv 3480   class class class wbr 5143  [cec 8743   / cqs 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751
This theorem is referenced by:  eclclwwlkn1  30094
  Copyright terms: Public domain W3C validator