MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsecl Structured version   Visualization version   GIF version

Theorem elqsecl 8686
Description: Membership in a quotient set by an equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
elqsecl (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑦)   𝑊(𝑦)   𝑋(𝑦)

Proof of Theorem elqsecl
StepHypRef Expression
1 elqsg 8683 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = [𝑥] ))
2 vex 3438 . . . . 5 𝑥 ∈ V
3 dfec2 8620 . . . . 5 (𝑥 ∈ V → [𝑥] = {𝑦𝑥 𝑦})
42, 3mp1i 13 . . . 4 (𝐵𝑋 → [𝑥] = {𝑦𝑥 𝑦})
54eqeq2d 2741 . . 3 (𝐵𝑋 → (𝐵 = [𝑥] 𝐵 = {𝑦𝑥 𝑦}))
65rexbidv 3154 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = [𝑥] ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
71, 6bitrd 279 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2110  {cab 2708  wrex 3054  Vcvv 3434   class class class wbr 5089  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619  df-qs 8623
This theorem is referenced by:  eclclwwlkn1  30045
  Copyright terms: Public domain W3C validator