![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsecl | Structured version Visualization version GIF version |
Description: Membership in a quotient set by an equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
elqsecl | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg 8034 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ )) | |
2 | vex 3386 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | dfec2 7983 | . . . . 5 ⊢ (𝑥 ∈ V → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) | |
4 | 2, 3 | mp1i 13 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) |
5 | 4 | eqeq2d 2807 | . . 3 ⊢ (𝐵 ∈ 𝑋 → (𝐵 = [𝑥] ∼ ↔ 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
6 | 5 | rexbidv 3231 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
7 | 1, 6 | bitrd 271 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 {cab 2783 ∃wrex 3088 Vcvv 3383 class class class wbr 4841 [cec 7978 / cqs 7979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-cnv 5318 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-ec 7982 df-qs 7986 |
This theorem is referenced by: eclclwwlkn1 27385 |
Copyright terms: Public domain | W3C validator |