MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsecl Structured version   Visualization version   GIF version

Theorem elqsecl 8765
Description: Membership in a quotient set by an equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
elqsecl (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑦)   𝑊(𝑦)   𝑋(𝑦)

Proof of Theorem elqsecl
StepHypRef Expression
1 elqsg 8762 . 2 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = [𝑥] ))
2 vex 3479 . . . . 5 𝑥 ∈ V
3 dfec2 8706 . . . . 5 (𝑥 ∈ V → [𝑥] = {𝑦𝑥 𝑦})
42, 3mp1i 13 . . . 4 (𝐵𝑋 → [𝑥] = {𝑦𝑥 𝑦})
54eqeq2d 2744 . . 3 (𝐵𝑋 → (𝐵 = [𝑥] 𝐵 = {𝑦𝑥 𝑦}))
65rexbidv 3179 . 2 (𝐵𝑋 → (∃𝑥𝑊 𝐵 = [𝑥] ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
71, 6bitrd 279 1 (𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  Vcvv 3475   class class class wbr 5149  [cec 8701   / cqs 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705  df-qs 8709
This theorem is referenced by:  eclclwwlkn1  29328
  Copyright terms: Public domain W3C validator