![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsecl | Structured version Visualization version GIF version |
Description: Membership in a quotient set by an equivalence class according to ∼. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
elqsecl | ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg 8826 | . 2 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ )) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | dfec2 8766 | . . . . 5 ⊢ (𝑥 ∈ V → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) | |
4 | 2, 3 | mp1i 13 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → [𝑥] ∼ = {𝑦 ∣ 𝑥 ∼ 𝑦}) |
5 | 4 | eqeq2d 2751 | . . 3 ⊢ (𝐵 ∈ 𝑋 → (𝐵 = [𝑥] ∼ ↔ 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
6 | 5 | rexbidv 3185 | . 2 ⊢ (𝐵 ∈ 𝑋 → (∃𝑥 ∈ 𝑊 𝐵 = [𝑥] ∼ ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
7 | 1, 6 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ (𝑊 / ∼ ) ↔ ∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∣ 𝑥 ∼ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 class class class wbr 5166 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 |
This theorem is referenced by: eclclwwlkn1 30107 |
Copyright terms: Public domain | W3C validator |