Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqs1cossres Structured version   Visualization version   GIF version

Theorem eldmqs1cossres 38615
Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.)
Assertion
Ref Expression
eldmqs1cossres (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqs1cossres
StepHypRef Expression
1 elqsg 8826 . . 3 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴)))
2 df-rex 3077 . . . 4 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)))
3 eldm1cossres2 38417 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅))
43elv 3493 . . . . . 6 (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅)
54anbi1i 623 . . . . 5 ((𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
65exbii 1846 . . . 4 (∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
72, 6bitri 275 . . 3 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
81, 7bitrdi 287 . 2 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴))))
9 df-rex 3077 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
109rexbii 3100 . . 3 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
11 rexcom4 3294 . . . 4 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
12 r19.41v 3195 . . . . 5 (∃𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1312exbii 1846 . . . 4 (∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1411, 13bitri 275 . . 3 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1510, 14bitri 275 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
168, 15bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  dom cdm 5700  cres 5702  [cec 8761   / cqs 8762  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-coss 38367
This theorem is referenced by:  releldmqscoss  38616
  Copyright terms: Public domain W3C validator