Proof of Theorem eldmqs1cossres
Step | Hyp | Ref
| Expression |
1 | | elqsg 8577 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
2 | | df-rex 3069 |
. . . 4
⊢
(∃𝑥 ∈ dom
≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
3 | | eldm1cossres2 36605 |
. . . . . . 7
⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅)) |
4 | 3 | elv 3440 |
. . . . . 6
⊢ (𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅) |
5 | 4 | anbi1i 623 |
. . . . 5
⊢ ((𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ (∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
6 | 5 | exbii 1846 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
7 | 2, 6 | bitri 274 |
. . 3
⊢
(∃𝑥 ∈ dom
≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
8 | 1, 7 | bitrdi 286 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)))) |
9 | | df-rex 3069 |
. . . 4
⊢
(∃𝑥 ∈ [
𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
10 | 9 | rexbii 3091 |
. . 3
⊢
(∃𝑢 ∈
𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
11 | | rexcom4 3261 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥∃𝑢 ∈ 𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
12 | | r19.41v 3179 |
. . . . 5
⊢
(∃𝑢 ∈
𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ (∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
13 | 12 | exbii 1846 |
. . . 4
⊢
(∃𝑥∃𝑢 ∈ 𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
14 | 11, 13 | bitri 274 |
. . 3
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
15 | 10, 14 | bitri 274 |
. 2
⊢
(∃𝑢 ∈
𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
16 | 8, 15 | bitr4di 288 |
1
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |