Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqs1cossres Structured version   Visualization version   GIF version

Theorem eldmqs1cossres 38676
Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.)
Assertion
Ref Expression
eldmqs1cossres (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqs1cossres
StepHypRef Expression
1 elqsg 8683 . . 3 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴)))
2 df-rex 3055 . . . 4 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)))
3 eldm1cossres2 38477 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅))
43elv 3439 . . . . . 6 (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅)
54anbi1i 624 . . . . 5 ((𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
65exbii 1849 . . . 4 (∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
72, 6bitri 275 . . 3 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
81, 7bitrdi 287 . 2 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴))))
9 df-rex 3055 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
109rexbii 3077 . . 3 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
11 rexcom4 3257 . . . 4 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
12 r19.41v 3160 . . . . 5 (∃𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1312exbii 1849 . . . 4 (∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1411, 13bitri 275 . . 3 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1510, 14bitri 275 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
168, 15bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2110  wrex 3054  Vcvv 3434  dom cdm 5614  cres 5616  [cec 8615   / cqs 8616  ccoss 38194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-11 2159  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619  df-qs 8623  df-coss 38427
This theorem is referenced by:  releldmqscoss  38677
  Copyright terms: Public domain W3C validator