Proof of Theorem eldmqs1cossres
| Step | Hyp | Ref
| Expression |
| 1 | | elqsg 8808 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 2 | | df-rex 3071 |
. . . 4
⊢
(∃𝑥 ∈ dom
≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 3 | | eldm1cossres2 38462 |
. . . . . . 7
⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅)) |
| 4 | 3 | elv 3485 |
. . . . . 6
⊢ (𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅) |
| 5 | 4 | anbi1i 624 |
. . . . 5
⊢ ((𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ (∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 6 | 5 | exbii 1848 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ dom ≀ (𝑅 ↾ 𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 7 | 2, 6 | bitri 275 |
. . 3
⊢
(∃𝑥 ∈ dom
≀ (𝑅 ↾ 𝐴)𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 8 | 1, 7 | bitrdi 287 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)))) |
| 9 | | df-rex 3071 |
. . . 4
⊢
(∃𝑥 ∈ [
𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 10 | 9 | rexbii 3094 |
. . 3
⊢
(∃𝑢 ∈
𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 11 | | rexcom4 3288 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥∃𝑢 ∈ 𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 12 | | r19.41v 3189 |
. . . . 5
⊢
(∃𝑢 ∈
𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ (∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 13 | 12 | exbii 1848 |
. . . 4
⊢
(∃𝑥∃𝑢 ∈ 𝐴 (𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 14 | 11, 13 | bitri 275 |
. . 3
⊢
(∃𝑢 ∈
𝐴 ∃𝑥(𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 15 | 10, 14 | bitri 275 |
. 2
⊢
(∃𝑢 ∈
𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥(∃𝑢 ∈ 𝐴 𝑥 ∈ [𝑢]𝑅 ∧ 𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |
| 16 | 8, 15 | bitr4di 289 |
1
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) |