Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqs1cossres Structured version   Visualization version   GIF version

Theorem eldmqs1cossres 38644
Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.)
Assertion
Ref Expression
eldmqs1cossres (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqs1cossres
StepHypRef Expression
1 elqsg 8714 . . 3 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴)))
2 df-rex 3054 . . . 4 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)))
3 eldm1cossres2 38445 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅))
43elv 3449 . . . . . 6 (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅)
54anbi1i 624 . . . . 5 ((𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
65exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
72, 6bitri 275 . . 3 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
81, 7bitrdi 287 . 2 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴))))
9 df-rex 3054 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
109rexbii 3076 . . 3 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
11 rexcom4 3262 . . . 4 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
12 r19.41v 3165 . . . . 5 (∃𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1312exbii 1848 . . . 4 (∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1411, 13bitri 275 . . 3 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1510, 14bitri 275 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
168, 15bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3444  dom cdm 5631  cres 5633  [cec 8646   / cqs 8647  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654  df-coss 38395
This theorem is referenced by:  releldmqscoss  38645
  Copyright terms: Public domain W3C validator