MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpi1 Structured version   Visualization version   GIF version

Theorem elpi1 23746
Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
Assertion
Ref Expression
elpi1 (𝜑 → (𝐹𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝑋   𝐵,𝑓   𝑓,𝐽   𝜑,𝑓   𝑓,𝑌

Proof of Theorem elpi1
StepHypRef Expression
1 elpi1.g . . . 4 𝐺 = (𝐽 π1 𝑌)
2 elpi1.1 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 elpi1.2 . . . 4 (𝜑𝑌𝑋)
4 elpi1.b . . . . 5 𝐵 = (Base‘𝐺)
54a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝐺))
61, 2, 3, 5pi1bas2 23742 . . 3 (𝜑𝐵 = ( 𝐵 / ( ≃ph𝐽)))
76eleq2d 2837 . 2 (𝜑 → (𝐹𝐵𝐹 ∈ ( 𝐵 / ( ≃ph𝐽))))
8 elex 3428 . . . 4 (𝐹 ∈ ( 𝐵 / ( ≃ph𝐽)) → 𝐹 ∈ V)
9 id 22 . . . . . 6 (𝐹 = [𝑓]( ≃ph𝐽) → 𝐹 = [𝑓]( ≃ph𝐽))
10 fvex 6671 . . . . . . 7 ( ≃ph𝐽) ∈ V
11 ecexg 8303 . . . . . . 7 (( ≃ph𝐽) ∈ V → [𝑓]( ≃ph𝐽) ∈ V)
1210, 11ax-mp 5 . . . . . 6 [𝑓]( ≃ph𝐽) ∈ V
139, 12eqeltrdi 2860 . . . . 5 (𝐹 = [𝑓]( ≃ph𝐽) → 𝐹 ∈ V)
1413rexlimivw 3206 . . . 4 (∃𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽) → 𝐹 ∈ V)
15 elqsg 8358 . . . 4 (𝐹 ∈ V → (𝐹 ∈ ( 𝐵 / ( ≃ph𝐽)) ↔ ∃𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽)))
168, 14, 15pm5.21nii 383 . . 3 (𝐹 ∈ ( 𝐵 / ( ≃ph𝐽)) ↔ ∃𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽))
171, 2, 3, 5pi1eluni 23743 . . . . . . 7 (𝜑 → (𝑓 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))
18 3anass 1092 . . . . . . 7 ((𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))
1917, 18bitrdi 290 . . . . . 6 (𝜑 → (𝑓 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌))))
2019anbi1d 632 . . . . 5 (𝜑 → ((𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽)) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
21 anass 472 . . . . 5 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
2220, 21bitrdi 290 . . . 4 (𝜑 → ((𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽)))))
2322rexbidv2 3219 . . 3 (𝜑 → (∃𝑓 𝐵𝐹 = [𝑓]( ≃ph𝐽) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
2416, 23syl5bb 286 . 2 (𝜑 → (𝐹 ∈ ( 𝐵 / ( ≃ph𝐽)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
257, 24bitrd 282 1 (𝜑 → (𝐹𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  Vcvv 3409   cuni 4798  cfv 6335  (class class class)co 7150  [cec 8297   / cqs 8298  0cc0 10575  1c1 10576  Basecbs 16541  TopOnctopon 21610   Cn ccn 21924  IIcii 23576  phcphtpc 23670   π1 cpi1 23704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-qs 8305  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-icc 12786  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-qus 16840  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-cn 21927  df-cnp 21928  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-ii 23578  df-htpy 23671  df-phtpy 23672  df-phtpc 23693  df-om1 23707  df-pi1 23709
This theorem is referenced by:  elpi1i  23747  sconnpi1  32717
  Copyright terms: Public domain W3C validator