![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpi1 | Structured version Visualization version GIF version |
Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | β’ πΊ = (π½ Ο1 π) |
elpi1.b | β’ π΅ = (BaseβπΊ) |
elpi1.1 | β’ (π β π½ β (TopOnβπ)) |
elpi1.2 | β’ (π β π β π) |
Ref | Expression |
---|---|
elpi1 | β’ (π β (πΉ β π΅ β βπ β (II Cn π½)(((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpi1.g | . . . 4 β’ πΊ = (π½ Ο1 π) | |
2 | elpi1.1 | . . . 4 β’ (π β π½ β (TopOnβπ)) | |
3 | elpi1.2 | . . . 4 β’ (π β π β π) | |
4 | elpi1.b | . . . . 5 β’ π΅ = (BaseβπΊ) | |
5 | 4 | a1i 11 | . . . 4 β’ (π β π΅ = (BaseβπΊ)) |
6 | 1, 2, 3, 5 | pi1bas2 24788 | . . 3 β’ (π β π΅ = (βͺ π΅ / ( βphβπ½))) |
7 | 6 | eleq2d 2817 | . 2 β’ (π β (πΉ β π΅ β πΉ β (βͺ π΅ / ( βphβπ½)))) |
8 | elex 3491 | . . . 4 β’ (πΉ β (βͺ π΅ / ( βphβπ½)) β πΉ β V) | |
9 | id 22 | . . . . . 6 β’ (πΉ = [π]( βphβπ½) β πΉ = [π]( βphβπ½)) | |
10 | fvex 6903 | . . . . . . 7 β’ ( βphβπ½) β V | |
11 | ecexg 8709 | . . . . . . 7 β’ (( βphβπ½) β V β [π]( βphβπ½) β V) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 β’ [π]( βphβπ½) β V |
13 | 9, 12 | eqeltrdi 2839 | . . . . 5 β’ (πΉ = [π]( βphβπ½) β πΉ β V) |
14 | 13 | rexlimivw 3149 | . . . 4 β’ (βπ β βͺ π΅πΉ = [π]( βphβπ½) β πΉ β V) |
15 | elqsg 8764 | . . . 4 β’ (πΉ β V β (πΉ β (βͺ π΅ / ( βphβπ½)) β βπ β βͺ π΅πΉ = [π]( βphβπ½))) | |
16 | 8, 14, 15 | pm5.21nii 377 | . . 3 β’ (πΉ β (βͺ π΅ / ( βphβπ½)) β βπ β βͺ π΅πΉ = [π]( βphβπ½)) |
17 | 1, 2, 3, 5 | pi1eluni 24789 | . . . . . . 7 β’ (π β (π β βͺ π΅ β (π β (II Cn π½) β§ (πβ0) = π β§ (πβ1) = π))) |
18 | 3anass 1093 | . . . . . . 7 β’ ((π β (II Cn π½) β§ (πβ0) = π β§ (πβ1) = π) β (π β (II Cn π½) β§ ((πβ0) = π β§ (πβ1) = π))) | |
19 | 17, 18 | bitrdi 286 | . . . . . 6 β’ (π β (π β βͺ π΅ β (π β (II Cn π½) β§ ((πβ0) = π β§ (πβ1) = π)))) |
20 | 19 | anbi1d 628 | . . . . 5 β’ (π β ((π β βͺ π΅ β§ πΉ = [π]( βphβπ½)) β ((π β (II Cn π½) β§ ((πβ0) = π β§ (πβ1) = π)) β§ πΉ = [π]( βphβπ½)))) |
21 | anass 467 | . . . . 5 β’ (((π β (II Cn π½) β§ ((πβ0) = π β§ (πβ1) = π)) β§ πΉ = [π]( βphβπ½)) β (π β (II Cn π½) β§ (((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½)))) | |
22 | 20, 21 | bitrdi 286 | . . . 4 β’ (π β ((π β βͺ π΅ β§ πΉ = [π]( βphβπ½)) β (π β (II Cn π½) β§ (((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½))))) |
23 | 22 | rexbidv2 3172 | . . 3 β’ (π β (βπ β βͺ π΅πΉ = [π]( βphβπ½) β βπ β (II Cn π½)(((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½)))) |
24 | 16, 23 | bitrid 282 | . 2 β’ (π β (πΉ β (βͺ π΅ / ( βphβπ½)) β βπ β (II Cn π½)(((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½)))) |
25 | 7, 24 | bitrd 278 | 1 β’ (π β (πΉ β π΅ β βπ β (II Cn π½)(((πβ0) = π β§ (πβ1) = π) β§ πΉ = [π]( βphβπ½)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwrex 3068 Vcvv 3472 βͺ cuni 4907 βcfv 6542 (class class class)co 7411 [cec 8703 / cqs 8704 0cc0 11112 1c1 11113 Basecbs 17148 TopOnctopon 22632 Cn ccn 22948 IIcii 24615 βphcphtpc 24715 Ο1 cpi1 24750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-icc 13335 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-qus 17459 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-cn 22951 df-cnp 22952 df-tx 23286 df-hmeo 23479 df-xms 24046 df-ms 24047 df-tms 24048 df-ii 24617 df-htpy 24716 df-phtpy 24717 df-phtpc 24738 df-om1 24753 df-pi1 24755 |
This theorem is referenced by: elpi1i 24793 sconnpi1 34528 |
Copyright terms: Public domain | W3C validator |