Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpi1 | Structured version Visualization version GIF version |
Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
elpi1 | ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpi1.g | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | elpi1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | elpi1.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
4 | elpi1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
6 | 1, 2, 3, 5 | pi1bas2 23742 | . . 3 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / ( ≃ph‘𝐽))) |
7 | 6 | eleq2d 2837 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ 𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)))) |
8 | elex 3428 | . . . 4 ⊢ (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) → 𝐹 ∈ V) | |
9 | id 22 | . . . . . 6 ⊢ (𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 = [𝑓]( ≃ph‘𝐽)) | |
10 | fvex 6671 | . . . . . . 7 ⊢ ( ≃ph‘𝐽) ∈ V | |
11 | ecexg 8303 | . . . . . . 7 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑓]( ≃ph‘𝐽) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ [𝑓]( ≃ph‘𝐽) ∈ V |
13 | 9, 12 | eqeltrdi 2860 | . . . . 5 ⊢ (𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 ∈ V) |
14 | 13 | rexlimivw 3206 | . . . 4 ⊢ (∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 ∈ V) |
15 | elqsg 8358 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽))) | |
16 | 8, 14, 15 | pm5.21nii 383 | . . 3 ⊢ (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽)) |
17 | 1, 2, 3, 5 | pi1eluni 23743 | . . . . . . 7 ⊢ (𝜑 → (𝑓 ∈ ∪ 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌))) |
18 | 3anass 1092 | . . . . . . 7 ⊢ ((𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌))) | |
19 | 17, 18 | bitrdi 290 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ ∪ 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))) |
20 | 19 | anbi1d 632 | . . . . 5 ⊢ (𝜑 → ((𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
21 | anass 472 | . . . . 5 ⊢ (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) | |
22 | 20, 21 | bitrdi 290 | . . . 4 ⊢ (𝜑 → ((𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽))))) |
23 | 22 | rexbidv2 3219 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
24 | 16, 23 | syl5bb 286 | . 2 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
25 | 7, 24 | bitrd 282 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 Vcvv 3409 ∪ cuni 4798 ‘cfv 6335 (class class class)co 7150 [cec 8297 / cqs 8298 0cc0 10575 1c1 10576 Basecbs 16541 TopOnctopon 21610 Cn ccn 21924 IIcii 23576 ≃phcphtpc 23670 π1 cpi1 23704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-ec 8301 df-qs 8305 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-icc 12786 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-qus 16840 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-mulg 18292 df-cntz 18514 df-cmn 18975 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-cn 21927 df-cnp 21928 df-tx 22262 df-hmeo 22455 df-xms 23022 df-ms 23023 df-tms 23024 df-ii 23578 df-htpy 23671 df-phtpy 23672 df-phtpc 23693 df-om1 23707 df-pi1 23709 |
This theorem is referenced by: elpi1i 23747 sconnpi1 32717 |
Copyright terms: Public domain | W3C validator |