![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpi1 | Structured version Visualization version GIF version |
Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
elpi1 | ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpi1.g | . . . 4 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | elpi1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | elpi1.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
4 | elpi1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
6 | 1, 2, 3, 5 | pi1bas2 23165 | . . 3 ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / ( ≃ph‘𝐽))) |
7 | 6 | eleq2d 2862 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ 𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)))) |
8 | elex 3398 | . . . 4 ⊢ (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) → 𝐹 ∈ V) | |
9 | id 22 | . . . . . 6 ⊢ (𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 = [𝑓]( ≃ph‘𝐽)) | |
10 | fvex 6422 | . . . . . . 7 ⊢ ( ≃ph‘𝐽) ∈ V | |
11 | ecexg 7984 | . . . . . . 7 ⊢ (( ≃ph‘𝐽) ∈ V → [𝑓]( ≃ph‘𝐽) ∈ V) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ [𝑓]( ≃ph‘𝐽) ∈ V |
13 | 9, 12 | syl6eqel 2884 | . . . . 5 ⊢ (𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 ∈ V) |
14 | 13 | rexlimivw 3208 | . . . 4 ⊢ (∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽) → 𝐹 ∈ V) |
15 | elqsg 8034 | . . . 4 ⊢ (𝐹 ∈ V → (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽))) | |
16 | 8, 14, 15 | pm5.21nii 370 | . . 3 ⊢ (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽)) |
17 | 1, 2, 3, 5 | pi1eluni 23166 | . . . . . . 7 ⊢ (𝜑 → (𝑓 ∈ ∪ 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌))) |
18 | 3anass 1117 | . . . . . . 7 ⊢ ((𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌))) | |
19 | 17, 18 | syl6bb 279 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ ∪ 𝐵 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))) |
20 | 19 | anbi1d 624 | . . . . 5 ⊢ (𝜑 → ((𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
21 | anass 461 | . . . . 5 ⊢ (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) | |
22 | 20, 21 | syl6bb 279 | . . . 4 ⊢ (𝜑 → ((𝑓 ∈ ∪ 𝐵 ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽))))) |
23 | 22 | rexbidv2 3227 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ ∪ 𝐵𝐹 = [𝑓]( ≃ph‘𝐽) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
24 | 16, 23 | syl5bb 275 | . 2 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐵 / ( ≃ph‘𝐽)) ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
25 | 7, 24 | bitrd 271 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3088 Vcvv 3383 ∪ cuni 4626 ‘cfv 6099 (class class class)co 6876 [cec 7978 / cqs 7979 0cc0 10222 1c1 10223 Basecbs 16181 TopOnctopon 21040 Cn ccn 21354 IIcii 23003 ≃phcphtpc 23093 π1 cpi1 23127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-ec 7982 df-qs 7986 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-fi 8557 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-cda 9276 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ioo 12424 df-icc 12427 df-fz 12577 df-fzo 12717 df-seq 13052 df-exp 13111 df-hash 13367 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-hom 16288 df-cco 16289 df-rest 16395 df-topn 16396 df-0g 16414 df-gsum 16415 df-topgen 16416 df-pt 16417 df-prds 16420 df-xrs 16474 df-qtop 16479 df-imas 16480 df-qus 16481 df-xps 16482 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-mulg 17854 df-cntz 18059 df-cmn 18507 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-cnfld 20066 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-cld 21149 df-cn 21357 df-cnp 21358 df-tx 21691 df-hmeo 21884 df-xms 22450 df-ms 22451 df-tms 22452 df-ii 23005 df-htpy 23094 df-phtpy 23095 df-phtpc 23116 df-om1 23130 df-pi1 23132 |
This theorem is referenced by: elpi1i 23170 sconnpi1 31730 |
Copyright terms: Public domain | W3C validator |