![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngfulem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rngqiprngfu 21306 (and lemma for rngqiprngu 21307). (Contributed by AV, 16-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
Ref | Expression |
---|---|
rngqiprngfulem1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.v | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
2 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
3 | eqid 2726 | . . . . 5 ⊢ (1r‘𝑄) = (1r‘𝑄) | |
4 | 2, 3 | ringidcl 20245 | . . . 4 ⊢ (𝑄 ∈ Ring → (1r‘𝑄) ∈ (Base‘𝑄)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑄) ∈ (Base‘𝑄)) |
6 | rngqiprngfu.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑄 = (𝑅 /s ∼ )) |
8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
10 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
11 | 10 | ovexi 7458 | . . . . 5 ⊢ ∼ ∈ V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
13 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
14 | 7, 9, 12, 13 | qusbas 17560 | . . 3 ⊢ (𝜑 → (𝐵 / ∼ ) = (Base‘𝑄)) |
15 | 5, 14 | eleqtrrd 2829 | . 2 ⊢ (𝜑 → (1r‘𝑄) ∈ (𝐵 / ∼ )) |
16 | fvexd 6916 | . . 3 ⊢ (𝜑 → (1r‘𝑄) ∈ V) | |
17 | elqsg 8797 | . . 3 ⊢ ((1r‘𝑄) ∈ V → ((1r‘𝑄) ∈ (𝐵 / ∼ ) ↔ ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ )) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝜑 → ((1r‘𝑄) ∈ (𝐵 / ∼ ) ↔ ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ )) |
19 | 15, 18 | mpbid 231 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 Vcvv 3462 ‘cfv 6554 (class class class)co 7424 [cec 8732 / cqs 8733 Basecbs 17213 ↾s cress 17242 .rcmulr 17267 /s cqus 17520 ~QG cqg 19116 Rngcrng 20135 1rcur 20164 Ringcrg 20216 2Idealc2idl 21238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-ec 8736 df-qs 8740 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-0g 17456 df-imas 17523 df-qus 17524 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mgp 20118 df-ur 20165 df-ring 20218 |
This theorem is referenced by: rngqiprngfulem2 21301 rngqipring1 21305 |
Copyright terms: Public domain | W3C validator |