Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elre0re Structured version   Visualization version   GIF version

Theorem elre0re 42247
Description: Specialized version of 0red 11118 without using ax-1cn 11067 and ax-cnre 11082. (Contributed by Steven Nguyen, 28-Jan-2023.)
Assertion
Ref Expression
elre0re (𝐴 ∈ ℝ → 0 ∈ ℝ)

Proof of Theorem elre0re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 11080 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 readdcl 11092 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ)
3 eleq1 2816 . . . 4 ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ))
42, 3syl5ibcom 245 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
54rexlimdva 3130 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
61, 5mpd 15 1 (𝐴 ∈ ℝ → 0 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-addrcl 11070  ax-rnegex 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803  df-rex 3054
This theorem is referenced by:  redvmptabs  42353  rernegcl  42364  renegadd  42365  reneg0addlid  42367  resubeulem1  42368  resubeulem2  42369  resubeu  42370  remul02  42398  remul01  42400  readdrid  42403  resubid1  42404  renegneg  42405  renegid2  42407  sn-it0e0  42409  relt0neg2  42450
  Copyright terms: Public domain W3C validator