|   | Mathbox for Steven Nguyen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version | ||
| Description: Specialized version of 0red 11265 without using ax-1cn 11214 and ax-cnre 11229. (Contributed by Steven Nguyen, 28-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-rnegex 11227 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 2 | readdcl 11239 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
| 3 | eleq1 2828 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) | 
| 5 | 4 | rexlimdva 3154 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) | 
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 (class class class)co 7432 ℝcr 11155 0cc0 11156 + caddc 11159 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-addrcl 11217 ax-rnegex 11227 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-rex 3070 | 
| This theorem is referenced by: redvmptabs 42395 rernegcl 42406 renegadd 42407 reneg0addlid 42409 resubeulem1 42410 resubeulem2 42411 resubeu 42412 remul02 42440 remul01 42442 readdrid 42444 resubid1 42445 renegneg 42446 renegid2 42448 sn-it0e0 42450 relt0neg2 42480 | 
| Copyright terms: Public domain | W3C validator |