| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version | ||
| Description: Specialized version of 0red 11115 without using ax-1cn 11064 and ax-cnre 11079. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 11077 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 2 | readdcl 11089 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
| 3 | eleq1 2819 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 5 | 4 | rexlimdva 3133 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 (class class class)co 7346 ℝcr 11005 0cc0 11006 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-addrcl 11067 ax-rnegex 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-rex 3057 |
| This theorem is referenced by: redvmptabs 42452 rernegcl 42463 renegadd 42464 reneg0addlid 42466 resubeulem1 42467 resubeulem2 42468 resubeu 42469 remul02 42497 remul01 42499 readdrid 42502 resubid1 42503 renegneg 42504 renegid2 42506 sn-it0e0 42508 relt0neg2 42549 |
| Copyright terms: Public domain | W3C validator |