Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version |
Description: Specialized version of 0red 10836 without using ax-1cn 10787 and ax-cnre 10802. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 10800 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | readdcl 10812 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
3 | eleq1 2825 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
4 | 2, 3 | syl5ibcom 248 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
5 | 4 | rexlimdva 3203 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 (class class class)co 7213 ℝcr 10728 0cc0 10729 + caddc 10732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-addrcl 10790 ax-rnegex 10800 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 |
This theorem is referenced by: rernegcl 40062 renegadd 40063 reneg0addid2 40065 resubeulem1 40066 resubeulem2 40067 resubeu 40068 remul02 40096 remul01 40098 readdid1 40100 resubid1 40101 renegneg 40102 renegid2 40104 sn-it0e0 40105 relt0neg2 40134 sn-inelr 40143 |
Copyright terms: Public domain | W3C validator |