Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elre0re Structured version   Visualization version   GIF version

Theorem elre0re 40291
Description: Specialized version of 0red 10978 without using ax-1cn 10929 and ax-cnre 10944. (Contributed by Steven Nguyen, 28-Jan-2023.)
Assertion
Ref Expression
elre0re (𝐴 ∈ ℝ → 0 ∈ ℝ)

Proof of Theorem elre0re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 10942 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 readdcl 10954 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ)
3 eleq1 2826 . . . 4 ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ))
42, 3syl5ibcom 244 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
54rexlimdva 3213 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
61, 5mpd 15 1 (𝐴 ∈ ℝ → 0 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-addrcl 10932  ax-rnegex 10942
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070
This theorem is referenced by:  rernegcl  40354  renegadd  40355  reneg0addid2  40357  resubeulem1  40358  resubeulem2  40359  resubeu  40360  remul02  40388  remul01  40390  readdid1  40392  resubid1  40393  renegneg  40394  renegid2  40396  sn-it0e0  40397  relt0neg2  40426  sn-inelr  40435
  Copyright terms: Public domain W3C validator