Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elre0re Structured version   Visualization version   GIF version

Theorem elre0re 41175
Description: Specialized version of 0red 11217 without using ax-1cn 11168 and ax-cnre 11183. (Contributed by Steven Nguyen, 28-Jan-2023.)
Assertion
Ref Expression
elre0re (𝐴 ∈ ℝ → 0 ∈ ℝ)

Proof of Theorem elre0re
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 11181 . 2 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
2 readdcl 11193 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ)
3 eleq1 2822 . . . 4 ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ))
42, 3syl5ibcom 244 . . 3 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
54rexlimdva 3156 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ))
61, 5mpd 15 1 (𝐴 ∈ ℝ → 0 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  (class class class)co 7409  cr 11109  0cc0 11110   + caddc 11113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-addrcl 11171  ax-rnegex 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-clel 2811  df-rex 3072
This theorem is referenced by:  rernegcl  41244  renegadd  41245  reneg0addlid  41247  resubeulem1  41248  resubeulem2  41249  resubeu  41250  remul02  41278  remul01  41280  readdrid  41282  resubid1  41283  renegneg  41284  renegid2  41286  sn-it0e0  41288  relt0neg2  41318
  Copyright terms: Public domain W3C validator