![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version |
Description: Specialized version of 0red 11217 without using ax-1cn 11168 and ax-cnre 11183. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 11181 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | readdcl 11193 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
3 | eleq1 2822 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
4 | 2, 3 | syl5ibcom 244 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
5 | 4 | rexlimdva 3156 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 (class class class)co 7409 ℝcr 11109 0cc0 11110 + caddc 11113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-addrcl 11171 ax-rnegex 11181 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-rex 3072 |
This theorem is referenced by: rernegcl 41244 renegadd 41245 reneg0addlid 41247 resubeulem1 41248 resubeulem2 41249 resubeu 41250 remul02 41278 remul01 41280 readdrid 41282 resubid1 41283 renegneg 41284 renegid2 41286 sn-it0e0 41288 relt0neg2 41318 |
Copyright terms: Public domain | W3C validator |