Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version |
Description: Specialized version of 0red 10978 without using ax-1cn 10929 and ax-cnre 10944. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 10942 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | readdcl 10954 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
3 | eleq1 2826 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
4 | 2, 3 | syl5ibcom 244 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
5 | 4 | rexlimdva 3213 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 (class class class)co 7275 ℝcr 10870 0cc0 10871 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-addrcl 10932 ax-rnegex 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rernegcl 40354 renegadd 40355 reneg0addid2 40357 resubeulem1 40358 resubeulem2 40359 resubeu 40360 remul02 40388 remul01 40390 readdid1 40392 resubid1 40393 renegneg 40394 renegid2 40396 sn-it0e0 40397 relt0neg2 40426 sn-inelr 40435 |
Copyright terms: Public domain | W3C validator |