![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elre0re | Structured version Visualization version GIF version |
Description: Specialized version of 0red 11293 without using ax-1cn 11242 and ax-cnre 11257. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
elre0re | ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 11255 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
2 | readdcl 11267 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 + 𝑥) ∈ ℝ) | |
3 | eleq1 2832 | . . . 4 ⊢ ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝑥) ∈ ℝ ↔ 0 ∈ ℝ)) | |
4 | 2, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
5 | 4 | rexlimdva 3161 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → 0 ∈ ℝ)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-addrcl 11245 ax-rnegex 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-rex 3077 |
This theorem is referenced by: rernegcl 42347 renegadd 42348 reneg0addlid 42350 resubeulem1 42351 resubeulem2 42352 resubeu 42353 remul02 42381 remul01 42383 readdrid 42385 resubid1 42386 renegneg 42387 renegid2 42389 sn-it0e0 42391 relt0neg2 42421 |
Copyright terms: Public domain | W3C validator |