![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegid2 | Structured version Visualization version GIF version |
Description: Commuted version of renegid 42396. (Contributed by SN, 4-May-2024.) |
Ref | Expression |
---|---|
renegid2 | ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegid 42396 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
2 | 1 | oveq2d 7454 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (𝐴 + (0 −ℝ 𝐴))) = ((0 −ℝ 𝐴) + 0)) |
3 | rernegcl 42394 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
4 | readdrid 42432 | . . . . 5 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → ((0 −ℝ 𝐴) + 0) = (0 −ℝ 𝐴)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 0) = (0 −ℝ 𝐴)) |
6 | 2, 5 | eqtrd 2777 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (𝐴 + (0 −ℝ 𝐴))) = (0 −ℝ 𝐴)) |
7 | 3 | recnd 11296 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
8 | recn 11252 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 7, 8, 7 | addassd 11290 | . . 3 ⊢ (𝐴 ∈ ℝ → (((0 −ℝ 𝐴) + 𝐴) + (0 −ℝ 𝐴)) = ((0 −ℝ 𝐴) + (𝐴 + (0 −ℝ 𝐴)))) |
10 | readdlid 42426 | . . . 4 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 + (0 −ℝ 𝐴)) = (0 −ℝ 𝐴)) | |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ 𝐴)) = (0 −ℝ 𝐴)) |
12 | 6, 9, 11 | 3eqtr4d 2787 | . 2 ⊢ (𝐴 ∈ ℝ → (((0 −ℝ 𝐴) + 𝐴) + (0 −ℝ 𝐴)) = (0 + (0 −ℝ 𝐴))) |
13 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
14 | 3, 13 | readdcld 11297 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) ∈ ℝ) |
15 | elre0re 42288 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
16 | readdcan2 42435 | . . 3 ⊢ ((((0 −ℝ 𝐴) + 𝐴) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℝ) → ((((0 −ℝ 𝐴) + 𝐴) + (0 −ℝ 𝐴)) = (0 + (0 −ℝ 𝐴)) ↔ ((0 −ℝ 𝐴) + 𝐴) = 0)) | |
17 | 14, 15, 3, 16 | syl3anc 1372 | . 2 ⊢ (𝐴 ∈ ℝ → ((((0 −ℝ 𝐴) + 𝐴) + (0 −ℝ 𝐴)) = (0 + (0 −ℝ 𝐴)) ↔ ((0 −ℝ 𝐴) + 𝐴) = 0)) |
18 | 12, 17 | mpbid 232 | 1 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℝcr 11161 0cc0 11162 + caddc 11165 −ℝ cresub 42388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-ltxr 11307 df-2 12336 df-3 12337 df-resub 42389 |
This theorem is referenced by: sn-it0e0 42438 sn-negex12 42439 reixi 42445 sn-0tie0 42462 zaddcomlem 42474 zaddcom 42475 cnreeu 42493 |
Copyright terms: Public domain | W3C validator |