Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegid2 Structured version   Visualization version   GIF version

Theorem renegid2 42436
Description: Commuted version of renegid 42396. (Contributed by SN, 4-May-2024.)
Assertion
Ref Expression
renegid2 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)

Proof of Theorem renegid2
StepHypRef Expression
1 renegid 42396 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
21oveq2d 7454 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = ((0 − 𝐴) + 0))
3 rernegcl 42394 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
4 readdrid 42432 . . . . 5 ((0 − 𝐴) ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
53, 4syl 17 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
62, 5eqtrd 2777 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = (0 − 𝐴))
73recnd 11296 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
8 recn 11252 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
97, 8, 7addassd 11290 . . 3 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = ((0 − 𝐴) + (𝐴 + (0 − 𝐴))))
10 readdlid 42426 . . . 4 ((0 − 𝐴) ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
113, 10syl 17 . . 3 (𝐴 ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
126, 9, 113eqtr4d 2787 . 2 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)))
13 id 22 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
143, 13readdcld 11297 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) ∈ ℝ)
15 elre0re 42288 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
16 readdcan2 42435 . . 3 ((((0 − 𝐴) + 𝐴) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 − 𝐴) ∈ ℝ) → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1714, 15, 3, 16syl3anc 1372 . 2 (𝐴 ∈ ℝ → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1812, 17mpbid 232 1 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2108  (class class class)co 7438  cr 11161  0cc0 11162   + caddc 11165   cresub 42388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-po 5601  df-so 5602  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-ltxr 11307  df-2 12336  df-3 12337  df-resub 42389
This theorem is referenced by:  sn-it0e0  42438  sn-negex12  42439  reixi  42445  sn-0tie0  42462  zaddcomlem  42474  zaddcom  42475  cnreeu  42493
  Copyright terms: Public domain W3C validator