Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegid2 Structured version   Visualization version   GIF version

Theorem renegid2 42322
Description: Commuted version of renegid 42282. (Contributed by SN, 4-May-2024.)
Assertion
Ref Expression
renegid2 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)

Proof of Theorem renegid2
StepHypRef Expression
1 renegid 42282 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
21oveq2d 7461 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = ((0 − 𝐴) + 0))
3 rernegcl 42280 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
4 readdrid 42318 . . . . 5 ((0 − 𝐴) ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
53, 4syl 17 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
62, 5eqtrd 2774 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = (0 − 𝐴))
73recnd 11314 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
8 recn 11270 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
97, 8, 7addassd 11308 . . 3 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = ((0 − 𝐴) + (𝐴 + (0 − 𝐴))))
10 readdlid 42312 . . . 4 ((0 − 𝐴) ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
113, 10syl 17 . . 3 (𝐴 ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
126, 9, 113eqtr4d 2784 . 2 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)))
13 id 22 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
143, 13readdcld 11315 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) ∈ ℝ)
15 elre0re 42198 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
16 readdcan2 42321 . . 3 ((((0 − 𝐴) + 𝐴) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 − 𝐴) ∈ ℝ) → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1714, 15, 3, 16syl3anc 1371 . 2 (𝐴 ∈ ℝ → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1812, 17mpbid 232 1 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2103  (class class class)co 7445  cr 11179  0cc0 11180   + caddc 11183   cresub 42274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-po 5611  df-so 5612  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-ltxr 11325  df-2 12352  df-3 12353  df-resub 42275
This theorem is referenced by:  sn-it0e0  42324  sn-negex12  42325  reixi  42331  sn-0tie0  42348  zaddcomlem  42360  zaddcom  42361  cnreeu  42379
  Copyright terms: Public domain W3C validator