Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegid2 Structured version   Visualization version   GIF version

Theorem renegid2 40317
Description: Commuted version of renegid 40277. (Contributed by SN, 4-May-2024.)
Assertion
Ref Expression
renegid2 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)

Proof of Theorem renegid2
StepHypRef Expression
1 renegid 40277 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
21oveq2d 7271 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = ((0 − 𝐴) + 0))
3 rernegcl 40275 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
4 readdid1 40313 . . . . 5 ((0 − 𝐴) ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
53, 4syl 17 . . . 4 (𝐴 ∈ ℝ → ((0 − 𝐴) + 0) = (0 − 𝐴))
62, 5eqtrd 2778 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + (𝐴 + (0 − 𝐴))) = (0 − 𝐴))
73recnd 10934 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
8 recn 10892 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
97, 8, 7addassd 10928 . . 3 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = ((0 − 𝐴) + (𝐴 + (0 − 𝐴))))
10 readdid2 40307 . . . 4 ((0 − 𝐴) ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
113, 10syl 17 . . 3 (𝐴 ∈ ℝ → (0 + (0 − 𝐴)) = (0 − 𝐴))
126, 9, 113eqtr4d 2788 . 2 (𝐴 ∈ ℝ → (((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)))
13 id 22 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
143, 13readdcld 10935 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) ∈ ℝ)
15 elre0re 40212 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
16 readdcan2 40316 . . 3 ((((0 − 𝐴) + 𝐴) ∈ ℝ ∧ 0 ∈ ℝ ∧ (0 − 𝐴) ∈ ℝ) → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1714, 15, 3, 16syl3anc 1369 . 2 (𝐴 ∈ ℝ → ((((0 − 𝐴) + 𝐴) + (0 − 𝐴)) = (0 + (0 − 𝐴)) ↔ ((0 − 𝐴) + 𝐴) = 0))
1812, 17mpbid 231 1 (𝐴 ∈ ℝ → ((0 − 𝐴) + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   cresub 40269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-2 11966  df-3 11967  df-resub 40270
This theorem is referenced by:  sn-it0e0  40318  sn-negex12  40319  reixi  40325  sn-0tie0  40342  cnreeu  40359
  Copyright terms: Public domain W3C validator