Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeu Structured version   Visualization version   GIF version

Theorem resubeu 42365
Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeu ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubeu
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 rernegcl 42359 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
32adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
4 elre0re 42242 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ∈ ℝ)
54, 4readdcld 11203 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
6 rernegcl 42359 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
87adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − (0 + 0)) ∈ ℝ)
9 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
108, 9readdcld 11203 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
113, 10readdcld 11203 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ)
12 resubeulem2 42364 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
13 oveq2 7395 . . . . 5 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))))
1413eqeq1d 2731 . . . 4 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵))
1514rspcev 3588 . . 3 ((((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
1611, 12, 15syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
171, 16renegeulem 42357 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  ∃!wreu 3352  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071   cresub 42353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-addrcl 11129  ax-addass 11133  ax-rnegex 11139  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-resub 42354
This theorem is referenced by:  rersubcl  42366  resubadd  42367  resubeqsub  42418
  Copyright terms: Public domain W3C validator