| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeu | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubeu | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 2 | rernegcl 42414 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 −ℝ 𝐴) ∈ ℝ) |
| 4 | elre0re 42305 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 5 | 4, 4 | readdcld 11264 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
| 6 | rernegcl 42414 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 −ℝ (0 + 0)) ∈ ℝ) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 10 | 8, 9 | readdcld 11264 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ (0 + 0)) + 𝐵) ∈ ℝ) |
| 11 | 3, 10 | readdcld 11264 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) ∈ ℝ) |
| 12 | resubeulem2 42419 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) | |
| 13 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)))) | |
| 14 | 13 | eqeq1d 2737 | . . . 4 ⊢ (𝑥 = ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵)) |
| 15 | 14 | rspcev 3601 | . . 3 ⊢ ((((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
| 16 | 11, 12, 15 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
| 17 | 1, 16 | renegeulem 42412 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∃!wreu 3357 (class class class)co 7405 ℝcr 11128 0cc0 11129 + caddc 11132 −ℝ cresub 42408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-addrcl 11190 ax-addass 11194 ax-rnegex 11200 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-resub 42409 |
| This theorem is referenced by: rersubcl 42421 resubadd 42422 resubeqsub 42472 |
| Copyright terms: Public domain | W3C validator |