Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeu Structured version   Visualization version   GIF version

Theorem resubeu 42384
Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeu ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubeu
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 rernegcl 42378 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
32adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
4 elre0re 42274 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ∈ ℝ)
54, 4readdcld 11288 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
6 rernegcl 42378 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
87adantr 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − (0 + 0)) ∈ ℝ)
9 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
108, 9readdcld 11288 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
113, 10readdcld 11288 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ)
12 resubeulem2 42383 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
13 oveq2 7439 . . . . 5 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))))
1413eqeq1d 2737 . . . 4 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵))
1514rspcev 3622 . . 3 ((((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
1611, 12, 15syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
171, 16renegeulem 42376 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  ∃!wreu 3376  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156   cresub 42372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-addrcl 11214  ax-addass 11218  ax-rnegex 11224  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-resub 42373
This theorem is referenced by:  rersubcl  42385  resubadd  42386  resubeqsub  42436
  Copyright terms: Public domain W3C validator