Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeu Structured version   Visualization version   GIF version

Theorem resubeu 39508
Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeu ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubeu
StepHypRef Expression
1 simpl 486 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 rernegcl 39502 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
32adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
4 elre0re 39455 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ∈ ℝ)
54, 4readdcld 10663 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
6 rernegcl 39502 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
87adantr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − (0 + 0)) ∈ ℝ)
9 simpr 488 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
108, 9readdcld 10663 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
113, 10readdcld 10663 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ)
12 resubeulem2 39507 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
13 oveq2 7147 . . . . 5 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))))
1413eqeq1d 2803 . . . 4 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵))
1514rspcev 3574 . . 3 ((((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
1611, 12, 15syl2anc 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
171, 16renegeulem 39500 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wrex 3110  ∃!wreu 3111  (class class class)co 7139  cr 10529  0cc0 10530   + caddc 10533   cresub 39496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-addrcl 10591  ax-addass 10595  ax-rnegex 10601  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-resub 39497
This theorem is referenced by:  rersubcl  39509  resubadd  39510  resubeqsub  39559
  Copyright terms: Public domain W3C validator