![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeu | Structured version Visualization version GIF version |
Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubeu | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
2 | rernegcl 41547 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 −ℝ 𝐴) ∈ ℝ) |
4 | elre0re 41478 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
5 | 4, 4 | readdcld 11248 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
6 | rernegcl 41547 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 −ℝ (0 + 0)) ∈ ℝ) |
9 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
10 | 8, 9 | readdcld 11248 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ (0 + 0)) + 𝐵) ∈ ℝ) |
11 | 3, 10 | readdcld 11248 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) ∈ ℝ) |
12 | resubeulem2 41552 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) | |
13 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)))) | |
14 | 13 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵)) |
15 | 14 | rspcev 3612 | . . 3 ⊢ ((((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 −ℝ 𝐴) + ((0 −ℝ (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
16 | 11, 12, 15 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
17 | 1, 16 | renegeulem 41545 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∃!wreu 3373 (class class class)co 7412 ℝcr 11112 0cc0 11113 + caddc 11116 −ℝ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-addrcl 11174 ax-addass 11178 ax-rnegex 11184 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-resub 41542 |
This theorem is referenced by: rersubcl 41554 resubadd 41555 resubeqsub 41605 |
Copyright terms: Public domain | W3C validator |