Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rernegcl Structured version   Visualization version   GIF version

Theorem rernegcl 40570
Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
rernegcl (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)

Proof of Theorem rernegcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elre0re 40507 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 resubval 40566 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
31, 2mpancom 685 . 2 (𝐴 ∈ ℝ → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
4 renegeu 40569 . . 3 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
5 riotacl 7292 . . 3 (∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ)
64, 5syl 17 . 2 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ)
73, 6eqeltrd 2838 1 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  ∃!wreu 3348  crio 7273  (class class class)co 7317  cr 10950  0cc0 10951   + caddc 10954   cresub 40564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-resscn 11008  ax-addrcl 11012  ax-rnegex 11022  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-ltxr 11094  df-resub 40565
This theorem is referenced by:  renegid  40572  reneg0addid2  40573  resubeulem1  40574  resubeulem2  40575  resubeu  40576  sn-00idlem2  40598  renegneg  40610  readdcan2  40611  renegid2  40612  sn-it0e0  40613  sn-negex12  40614  reixi  40620  rei4  40621  ipiiie0  40635  sn-0tie0  40637  mulgt0b2d  40646  sn-0lt1  40648  sn-inelr  40651  cnreeu  40654
  Copyright terms: Public domain W3C validator