Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rernegcl | Structured version Visualization version GIF version |
Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
rernegcl | ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 40507 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | resubval 40566 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
3 | 1, 2 | mpancom 685 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
4 | renegeu 40569 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
5 | riotacl 7292 | . . 3 ⊢ (∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) |
7 | 3, 6 | eqeltrd 2838 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃!wreu 3348 ℩crio 7273 (class class class)co 7317 ℝcr 10950 0cc0 10951 + caddc 10954 −ℝ cresub 40564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-addrcl 11012 ax-rnegex 11022 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-ltxr 11094 df-resub 40565 |
This theorem is referenced by: renegid 40572 reneg0addid2 40573 resubeulem1 40574 resubeulem2 40575 resubeu 40576 sn-00idlem2 40598 renegneg 40610 readdcan2 40611 renegid2 40612 sn-it0e0 40613 sn-negex12 40614 reixi 40620 rei4 40621 ipiiie0 40635 sn-0tie0 40637 mulgt0b2d 40646 sn-0lt1 40648 sn-inelr 40651 cnreeu 40654 |
Copyright terms: Public domain | W3C validator |