Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rernegcl | Structured version Visualization version GIF version |
Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
rernegcl | ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 40314 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | resubval 40373 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
3 | 1, 2 | mpancom 684 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
4 | renegeu 40376 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
5 | riotacl 7270 | . . 3 ⊢ (∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) |
7 | 3, 6 | eqeltrd 2834 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ∃!wreu 3219 ℩crio 7251 (class class class)co 7295 ℝcr 10898 0cc0 10899 + caddc 10902 −ℝ cresub 40371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-addrcl 10960 ax-rnegex 10970 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-ltxr 11042 df-resub 40372 |
This theorem is referenced by: renegid 40379 reneg0addid2 40380 resubeulem1 40381 resubeulem2 40382 resubeu 40383 sn-00idlem2 40405 renegneg 40417 readdcan2 40418 renegid2 40419 sn-it0e0 40420 sn-negex12 40421 reixi 40427 rei4 40428 ipiiie0 40442 sn-0tie0 40444 mulgt0b2d 40453 sn-0lt1 40455 sn-inelr 40458 cnreeu 40461 |
Copyright terms: Public domain | W3C validator |