![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rernegcl | Structured version Visualization version GIF version |
Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
rernegcl | ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 41477 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | resubval 41542 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
3 | 1, 2 | mpancom 684 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
4 | renegeu 41545 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
5 | riotacl 7385 | . . 3 ⊢ (∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) |
7 | 3, 6 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∃!wreu 3372 ℩crio 7366 (class class class)co 7411 ℝcr 11111 0cc0 11112 + caddc 11115 −ℝ cresub 41540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-addrcl 11173 ax-rnegex 11183 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-resub 41541 |
This theorem is referenced by: renegid 41548 reneg0addlid 41549 resubeulem1 41550 resubeulem2 41551 resubeu 41552 sn-00idlem2 41574 renegneg 41586 readdcan2 41587 renegid2 41588 sn-it0e0 41590 sn-negex12 41591 reixi 41597 rei4 41598 ipiiie0 41612 sn-0tie0 41614 zaddcomlem 41626 renegmulnnass 41628 zmulcomlem 41630 zmulcom 41631 mulgt0b2d 41635 sn-0lt1 41637 sn-inelr 41640 cnreeu 41643 |
Copyright terms: Public domain | W3C validator |