| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rernegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| rernegcl | ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re 42242 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | resubval 42355 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
| 3 | 1, 2 | mpancom 688 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
| 4 | renegeu 42358 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 5 | riotacl 7361 | . . 3 ⊢ (∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) ∈ ℝ) |
| 7 | 3, 6 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃!wreu 3352 ℩crio 7343 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 −ℝ cresub 42353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-addrcl 11129 ax-rnegex 11139 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-resub 42354 |
| This theorem is referenced by: renegid 42361 reneg0addlid 42362 resubeulem1 42363 resubeulem2 42364 resubeu 42365 sn-00idlem2 42387 renegneg 42400 readdcan2 42401 renegid2 42402 sn-it0e0 42404 sn-negex12 42405 reixi 42411 rei4 42412 ipiiie0 42426 sn-0tie0 42439 zaddcomlem 42451 renegmulnnass 42453 zmulcomlem 42455 zmulcom 42456 mulgt0b1d 42460 sn-0lt1 42463 sn-reclt0d 42469 mullt0b1d 42471 sn-inelr 42475 cnreeu 42478 |
| Copyright terms: Public domain | W3C validator |