| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > renegadd | Structured version Visualization version GIF version | ||
| Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| renegadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re 42357 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | resubval 42470 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
| 3 | 1, 2 | mpancom 688 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
| 4 | 3 | eqeq1d 2733 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
| 6 | renegeu 42473 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
| 7 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵)) | |
| 8 | 7 | eqeq1d 2733 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0)) |
| 9 | 8 | riota2 7328 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
| 10 | 6, 9 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
| 11 | 10 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
| 12 | 5, 11 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 ℩crio 7302 (class class class)co 7346 ℝcr 11005 0cc0 11006 + caddc 11009 −ℝ cresub 42468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-addrcl 11067 ax-rnegex 11077 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-resub 42469 |
| This theorem is referenced by: renegid 42476 resubeulem1 42478 |
| Copyright terms: Public domain | W3C validator |