Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegadd Structured version   Visualization version   GIF version

Theorem renegadd 39200
Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
renegadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))

Proof of Theorem renegadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elre0re 39152 . . . . 5 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 resubval 39195 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
31, 2mpancom 686 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
43eqeq1d 2823 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) = 𝐵 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
54adantr 483 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
6 renegeu 39198 . . . 4 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
7 oveq2 7163 . . . . . 6 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
87eqeq1d 2823 . . . . 5 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
98riota2 7138 . . . 4 ((𝐵 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
106, 9sylan2 594 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
1110ancoms 461 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
125, 11bitr4d 284 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ∃!wreu 3140  crio 7112  (class class class)co 7155  cr 10535  0cc0 10536   + caddc 10539   cresub 39193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-addrcl 10597  ax-rnegex 10607  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-ltxr 10679  df-resub 39194
This theorem is referenced by:  renegid  39201  resubeulem1  39203
  Copyright terms: Public domain W3C validator