Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegadd | Structured version Visualization version GIF version |
Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
renegadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 40291 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | resubval 40350 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
3 | 1, 2 | mpancom 685 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
4 | 3 | eqeq1d 2740 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
5 | 4 | adantr 481 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
6 | renegeu 40353 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
7 | oveq2 7283 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵)) | |
8 | 7 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0)) |
9 | 8 | riota2 7258 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
10 | 6, 9 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
11 | 10 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
12 | 5, 11 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!wreu 3066 ℩crio 7231 (class class class)co 7275 ℝcr 10870 0cc0 10871 + caddc 10874 −ℝ cresub 40348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-addrcl 10932 ax-rnegex 10942 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-resub 40349 |
This theorem is referenced by: renegid 40356 resubeulem1 40358 sn-inelr 40435 |
Copyright terms: Public domain | W3C validator |