Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegadd | Structured version Visualization version GIF version |
Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
renegadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 40559 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | resubval 40618 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) | |
3 | 1, 2 | mpancom 685 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) = (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)) |
4 | 3 | eqeq1d 2738 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
5 | 4 | adantr 481 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
6 | renegeu 40621 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | |
7 | oveq2 7345 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵)) | |
8 | 7 | eqeq1d 2738 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0)) |
9 | 8 | riota2 7319 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
10 | 6, 9 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
11 | 10 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (℩𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵)) |
12 | 5, 11 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 −ℝ 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃!wreu 3347 ℩crio 7292 (class class class)co 7337 ℝcr 10971 0cc0 10972 + caddc 10975 −ℝ cresub 40616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-addrcl 11033 ax-rnegex 11043 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-ltxr 11115 df-resub 40617 |
This theorem is referenced by: renegid 40624 resubeulem1 40626 sn-inelr 40703 |
Copyright terms: Public domain | W3C validator |