Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegadd Structured version   Visualization version   GIF version

 Description: Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
renegadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))

Proof of Theorem renegadd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elre0re 39328 . . . . 5 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2 resubval 39371 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
31, 2mpancom 687 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) = (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0))
43eqeq1d 2826 . . 3 (𝐴 ∈ ℝ → ((0 − 𝐴) = 𝐵 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
54adantr 484 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
6 renegeu 39374 . . . 4 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
7 oveq2 7148 . . . . . 6 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
87eqeq1d 2826 . . . . 5 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
98riota2 7123 . . . 4 ((𝐵 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
106, 9sylan2 595 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
1110ancoms 462 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) = 𝐵))
125, 11bitr4d 285 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃!wreu 3134  ℩crio 7097  (class class class)co 7140  ℝcr 10523  0cc0 10524   + caddc 10527   −ℝ cresub 39369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-resscn 10581  ax-addrcl 10585  ax-rnegex 10595  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-po 5457  df-so 5458  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10664  df-mnf 10665  df-ltxr 10667  df-resub 39370 This theorem is referenced by:  renegid  39377  resubeulem1  39379
 Copyright terms: Public domain W3C validator