Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeulem2 Structured version   Visualization version   GIF version

Theorem resubeulem2 40067
Description: Lemma for resubeu 40068. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeulem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)

Proof of Theorem resubeulem2
StepHypRef Expression
1 renegid 40064 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
21adantr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (0 − 𝐴)) = 0)
32oveq1d 7228 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (0 − 𝐴)) + ((0 − (0 + 0)) + 𝐵)) = (0 + ((0 − (0 + 0)) + 𝐵)))
4 simpl 486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
54recnd 10861 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
6 rernegcl 40062 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
76adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
87recnd 10861 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℂ)
9 elre0re 39998 . . . . . . . 8 (𝐵 ∈ ℝ → 0 ∈ ℝ)
109, 9readdcld 10862 . . . . . . 7 (𝐵 ∈ ℝ → (0 + 0) ∈ ℝ)
11 rernegcl 40062 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
1210, 11syl 17 . . . . . 6 (𝐵 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
13 id 22 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
1412, 13readdcld 10862 . . . . 5 (𝐵 ∈ ℝ → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
1514adantl 485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
1615recnd 10861 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℂ)
175, 8, 16addassd 10855 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (0 − 𝐴)) + ((0 − (0 + 0)) + 𝐵)) = (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))))
18 resubeulem1 40066 . . . . 5 (𝐵 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))
1918oveq1d 7228 . . . 4 (𝐵 ∈ ℝ → ((0 + (0 − (0 + 0))) + 𝐵) = ((0 − 0) + 𝐵))
209recnd 10861 . . . . 5 (𝐵 ∈ ℝ → 0 ∈ ℂ)
2112recnd 10861 . . . . 5 (𝐵 ∈ ℝ → (0 − (0 + 0)) ∈ ℂ)
22 recn 10819 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2320, 21, 22addassd 10855 . . . 4 (𝐵 ∈ ℝ → ((0 + (0 − (0 + 0))) + 𝐵) = (0 + ((0 − (0 + 0)) + 𝐵)))
24 reneg0addid2 40065 . . . 4 (𝐵 ∈ ℝ → ((0 − 0) + 𝐵) = 𝐵)
2519, 23, 243eqtr3d 2785 . . 3 (𝐵 ∈ ℝ → (0 + ((0 − (0 + 0)) + 𝐵)) = 𝐵)
2625adantl 485 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + ((0 − (0 + 0)) + 𝐵)) = 𝐵)
273, 17, 263eqtr3d 2785 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  (class class class)co 7213  cr 10728  0cc0 10729   + caddc 10732   cresub 40056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-addrcl 10790  ax-addass 10794  ax-rnegex 10800  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-resub 40057
This theorem is referenced by:  resubeu  40068
  Copyright terms: Public domain W3C validator