| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeulem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for resubeu 42407. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubeulem1 | ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re 42295 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | 1 | recnd 11289 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℂ) |
| 3 | 1, 1 | readdcld 11290 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
| 4 | rernegcl 42401 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
| 6 | 5 | recnd 11289 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℂ) |
| 7 | 2, 2, 6 | addassd 11283 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = (0 + (0 + (0 −ℝ (0 + 0))))) |
| 8 | renegid 42403 | . . . . 5 ⊢ ((0 + 0) ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) | |
| 9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) |
| 10 | 7, 9 | eqtr3d 2779 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 + (0 + (0 −ℝ (0 + 0)))) = 0) |
| 11 | 1, 5 | readdcld 11290 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) ∈ ℝ) |
| 12 | renegadd 42402 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (0 + (0 −ℝ (0 + 0))) ∈ ℝ) → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) | |
| 13 | 1, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) |
| 14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 0) = (0 + (0 −ℝ (0 + 0)))) |
| 15 | 14 | eqcomd 2743 | 1 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℝcr 11154 0cc0 11155 + caddc 11158 −ℝ cresub 42395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-addrcl 11216 ax-addass 11220 ax-rnegex 11226 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-resub 42396 |
| This theorem is referenced by: resubeulem2 42406 |
| Copyright terms: Public domain | W3C validator |