![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeulem1 | Structured version Visualization version GIF version |
Description: Lemma for resubeu 41246. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubeulem1 | ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 41172 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | 1 | recnd 11238 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℂ) |
3 | 1, 1 | readdcld 11239 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
4 | rernegcl 41240 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
6 | 5 | recnd 11238 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℂ) |
7 | 2, 2, 6 | addassd 11232 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = (0 + (0 + (0 −ℝ (0 + 0))))) |
8 | renegid 41242 | . . . . 5 ⊢ ((0 + 0) ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) |
10 | 7, 9 | eqtr3d 2774 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 + (0 + (0 −ℝ (0 + 0)))) = 0) |
11 | 1, 5 | readdcld 11239 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) ∈ ℝ) |
12 | renegadd 41241 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (0 + (0 −ℝ (0 + 0))) ∈ ℝ) → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) | |
13 | 1, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) |
14 | 10, 13 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 0) = (0 + (0 −ℝ (0 + 0)))) |
15 | 14 | eqcomd 2738 | 1 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 (class class class)co 7405 ℝcr 11105 0cc0 11106 + caddc 11109 −ℝ cresub 41234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-addrcl 11167 ax-addass 11171 ax-rnegex 11177 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-resub 41235 |
This theorem is referenced by: resubeulem2 41245 |
Copyright terms: Public domain | W3C validator |