![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeulem1 | Structured version Visualization version GIF version |
Description: Lemma for resubeu 41193. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubeulem1 | ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 41124 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | 1 | recnd 11237 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℂ) |
3 | 1, 1 | readdcld 11238 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
4 | rernegcl 41187 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
6 | 5 | recnd 11237 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℂ) |
7 | 2, 2, 6 | addassd 11231 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = (0 + (0 + (0 −ℝ (0 + 0))))) |
8 | renegid 41189 | . . . . 5 ⊢ ((0 + 0) ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) |
10 | 7, 9 | eqtr3d 2775 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 + (0 + (0 −ℝ (0 + 0)))) = 0) |
11 | 1, 5 | readdcld 11238 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) ∈ ℝ) |
12 | renegadd 41188 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (0 + (0 −ℝ (0 + 0))) ∈ ℝ) → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) | |
13 | 1, 11, 12 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) |
14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 0) = (0 + (0 −ℝ (0 + 0)))) |
15 | 14 | eqcomd 2739 | 1 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 (class class class)co 7403 ℝcr 11104 0cc0 11105 + caddc 11108 −ℝ cresub 41181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-resscn 11162 ax-addrcl 11166 ax-addass 11170 ax-rnegex 11176 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-ltxr 11248 df-resub 41182 |
This theorem is referenced by: resubeulem2 41192 |
Copyright terms: Public domain | W3C validator |