![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubeulem1 | Structured version Visualization version GIF version |
Description: Lemma for resubeu 42353. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubeulem1 | ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re 42249 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | 1 | recnd 11318 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℂ) |
3 | 1, 1 | readdcld 11319 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ) |
4 | rernegcl 42347 | . . . . . . 7 ⊢ ((0 + 0) ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℝ) |
6 | 5 | recnd 11318 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 + 0)) ∈ ℂ) |
7 | 2, 2, 6 | addassd 11312 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = (0 + (0 + (0 −ℝ (0 + 0))))) |
8 | renegid 42349 | . . . . 5 ⊢ ((0 + 0) ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 + 0) + (0 −ℝ (0 + 0))) = 0) |
10 | 7, 9 | eqtr3d 2782 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 + (0 + (0 −ℝ (0 + 0)))) = 0) |
11 | 1, 5 | readdcld 11319 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) ∈ ℝ) |
12 | renegadd 42348 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (0 + (0 −ℝ (0 + 0))) ∈ ℝ) → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) | |
13 | 1, 11, 12 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 0) = (0 + (0 −ℝ (0 + 0))) ↔ (0 + (0 + (0 −ℝ (0 + 0)))) = 0)) |
14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 0) = (0 + (0 −ℝ (0 + 0)))) |
15 | 14 | eqcomd 2746 | 1 ⊢ (𝐴 ∈ ℝ → (0 + (0 −ℝ (0 + 0))) = (0 −ℝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 −ℝ cresub 42341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-addrcl 11245 ax-addass 11249 ax-rnegex 11255 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-resub 42342 |
This theorem is referenced by: resubeulem2 42352 |
Copyright terms: Public domain | W3C validator |