Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeulem1 Structured version   Visualization version   GIF version

Theorem resubeulem1 38194
Description: Lemma for resubeu 38196. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeulem1 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))

Proof of Theorem resubeulem1
StepHypRef Expression
1 elre0re 38151 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
21recnd 10407 . . . . 5 (𝐴 ∈ ℝ → 0 ∈ ℂ)
31, 1readdcld 10408 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
4 rernegcl 38189 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
65recnd 10407 . . . . 5 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℂ)
72, 2, 6addassd 10401 . . . 4 (𝐴 ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = (0 + (0 + (0 − (0 + 0)))))
8 renegid 38191 . . . . 5 ((0 + 0) ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = 0)
93, 8syl 17 . . . 4 (𝐴 ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = 0)
107, 9eqtr3d 2816 . . 3 (𝐴 ∈ ℝ → (0 + (0 + (0 − (0 + 0)))) = 0)
111, 5readdcld 10408 . . . 4 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) ∈ ℝ)
12 renegadd 38190 . . . 4 ((0 ∈ ℝ ∧ (0 + (0 − (0 + 0))) ∈ ℝ) → ((0 − 0) = (0 + (0 − (0 + 0))) ↔ (0 + (0 + (0 − (0 + 0)))) = 0))
131, 11, 12syl2anc 579 . . 3 (𝐴 ∈ ℝ → ((0 − 0) = (0 + (0 − (0 + 0))) ↔ (0 + (0 + (0 − (0 + 0)))) = 0))
1410, 13mpbird 249 . 2 (𝐴 ∈ ℝ → (0 − 0) = (0 + (0 − (0 + 0))))
1514eqcomd 2784 1 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  (class class class)co 6924  cr 10273  0cc0 10274   + caddc 10277   cresub 38183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-addrcl 10335  ax-addass 10339  ax-rnegex 10345  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-ltxr 10418  df-resub 38184
This theorem is referenced by:  resubeulem2  38195
  Copyright terms: Public domain W3C validator