Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeulem1 Structured version   Visualization version   GIF version

Theorem resubeulem1 39461
Description: Lemma for resubeu 39463. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeulem1 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))

Proof of Theorem resubeulem1
StepHypRef Expression
1 elre0re 39410 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
21recnd 10658 . . . . 5 (𝐴 ∈ ℝ → 0 ∈ ℂ)
31, 1readdcld 10659 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
4 rernegcl 39457 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
65recnd 10658 . . . . 5 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℂ)
72, 2, 6addassd 10652 . . . 4 (𝐴 ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = (0 + (0 + (0 − (0 + 0)))))
8 renegid 39459 . . . . 5 ((0 + 0) ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = 0)
93, 8syl 17 . . . 4 (𝐴 ∈ ℝ → ((0 + 0) + (0 − (0 + 0))) = 0)
107, 9eqtr3d 2859 . . 3 (𝐴 ∈ ℝ → (0 + (0 + (0 − (0 + 0)))) = 0)
111, 5readdcld 10659 . . . 4 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) ∈ ℝ)
12 renegadd 39458 . . . 4 ((0 ∈ ℝ ∧ (0 + (0 − (0 + 0))) ∈ ℝ) → ((0 − 0) = (0 + (0 − (0 + 0))) ↔ (0 + (0 + (0 − (0 + 0)))) = 0))
131, 11, 12syl2anc 587 . . 3 (𝐴 ∈ ℝ → ((0 − 0) = (0 + (0 − (0 + 0))) ↔ (0 + (0 + (0 − (0 + 0)))) = 0))
1410, 13mpbird 260 . 2 (𝐴 ∈ ℝ → (0 − 0) = (0 + (0 − (0 + 0))))
1514eqcomd 2828 1 (𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2114  (class class class)co 7140  cr 10525  0cc0 10526   + caddc 10529   cresub 39451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-addrcl 10587  ax-addass 10591  ax-rnegex 10597  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-resub 39452
This theorem is referenced by:  resubeulem2  39462
  Copyright terms: Public domain W3C validator