Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 42270
Description: Alternate proof of 1t1e1 12410 using a different set of axioms (add ax-mulrcl 11200, ax-i2m1 11205, ax-1ne0 11206, ax-rrecex 11209 and remove ax-resscn 11194, ax-mulcom 11201, ax-mulass 11203, ax-distr 11204). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 11243 . 2 1 ∈ ℝ
2 ax-1rid 11207 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  (class class class)co 7413  cr 11136  1c1 11138   · cmul 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-mulcl 11199  ax-mulrcl 11200  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rrecex 11209  ax-cnre 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416
This theorem is referenced by:  nnmul1com  42285  remulinvcom  42441  sn-0tie0  42448
  Copyright terms: Public domain W3C validator