Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 42243
Description: Alternate proof of 1t1e1 12343 using a different set of axioms (add ax-mulrcl 11131, ax-i2m1 11136, ax-1ne0 11137, ax-rrecex 11140 and remove ax-resscn 11125, ax-mulcom 11132, ax-mulass 11134, ax-distr 11135). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 11174 . 2 1 ∈ ℝ
2 ax-1rid 11138 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cr 11067  1c1 11069   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rrecex 11140  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  nnmul1com  42259  remulinvcom  42421  sn-0tie0  42439
  Copyright terms: Public domain W3C validator