Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 40213
Description: Alternate proof of 1t1e1 12065 using a different set of axioms (add ax-mulrcl 10865, ax-i2m1 10870, ax-1ne0 10871, ax-rrecex 10874 and remove ax-resscn 10859, ax-mulcom 10866, ax-mulass 10868, ax-distr 10869). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 10906 . 2 1 ∈ ℝ
2 ax-1rid 10872 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-mulrcl 10865  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rrecex 10874  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  nnmul1com  40222  remulinvcom  40335  sn-0tie0  40342
  Copyright terms: Public domain W3C validator