Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 40292
Description: Alternate proof of 1t1e1 12135 using a different set of axioms (add ax-mulrcl 10934, ax-i2m1 10939, ax-1ne0 10940, ax-rrecex 10943 and remove ax-resscn 10928, ax-mulcom 10935, ax-mulass 10937, ax-distr 10938). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 10975 . 2 1 ∈ ℝ
2 ax-1rid 10941 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  cr 10870  1c1 10872   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rrecex 10943  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  nnmul1com  40301  remulinvcom  40414  sn-0tie0  40421
  Copyright terms: Public domain W3C validator