Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 42306
Description: Alternate proof of 1t1e1 12402 using a different set of axioms (add ax-mulrcl 11192, ax-i2m1 11197, ax-1ne0 11198, ax-rrecex 11201 and remove ax-resscn 11186, ax-mulcom 11193, ax-mulass 11195, ax-distr 11196). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 11235 . 2 1 ∈ ℝ
2 ax-1rid 11199 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7405  cr 11128  1c1 11130   · cmul 11134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rrecex 11201  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408
This theorem is referenced by:  nnmul1com  42321  remulinvcom  42475  sn-0tie0  42482
  Copyright terms: Public domain W3C validator