| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1t1e1ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 1t1e1 12402 using a different set of axioms (add ax-mulrcl 11192, ax-i2m1 11197, ax-1ne0 11198, ax-rrecex 11201 and remove ax-resscn 11186, ax-mulcom 11193, ax-mulass 11195, ax-distr 11196). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1t1e1ALT | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-1rid 11199 | . 2 ⊢ (1 ∈ ℝ → (1 · 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℝcr 11128 1c1 11130 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: nnmul1com 42321 remulinvcom 42475 sn-0tie0 42482 |
| Copyright terms: Public domain | W3C validator |