![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1t1e1ALT | Structured version Visualization version GIF version |
Description: Alternate proof of 1t1e1 12455 using a different set of axioms (add ax-mulrcl 11247, ax-i2m1 11252, ax-1ne0 11253, ax-rrecex 11256 and remove ax-resscn 11241, ax-mulcom 11248, ax-mulass 11250, ax-distr 11251). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1t1e1ALT | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-1rid 11254 | . 2 ⊢ (1 ∈ ℝ → (1 · 1) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: nnmul1com 42260 remulinvcom 42408 sn-0tie0 42415 |
Copyright terms: Public domain | W3C validator |