Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 42236
Description: Alternate proof of 1t1e1 12319 using a different set of axioms (add ax-mulrcl 11107, ax-i2m1 11112, ax-1ne0 11113, ax-rrecex 11116 and remove ax-resscn 11101, ax-mulcom 11108, ax-mulass 11110, ax-distr 11111). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 11150 . 2 1 ∈ ℝ
2 ax-1rid 11114 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7369  cr 11043  1c1 11045   · cmul 11049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-mulcl 11106  ax-mulrcl 11107  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rrecex 11116  ax-cnre 11117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  nnmul1com  42252  remulinvcom  42414  sn-0tie0  42432
  Copyright terms: Public domain W3C validator