Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1t1e1ALT Structured version   Visualization version   GIF version

Theorem 1t1e1ALT 41631
Description: Alternate proof of 1t1e1 12370 using a different set of axioms (add ax-mulrcl 11168, ax-i2m1 11173, ax-1ne0 11174, ax-rrecex 11177 and remove ax-resscn 11162, ax-mulcom 11169, ax-mulass 11171, ax-distr 11172). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1t1e1ALT (1 · 1) = 1

Proof of Theorem 1t1e1ALT
StepHypRef Expression
1 1re 11210 . 2 1 ∈ ℝ
2 ax-1rid 11175 . 2 (1 ∈ ℝ → (1 · 1) = 1)
31, 2ax-mp 5 1 (1 · 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  (class class class)co 7401  cr 11104  1c1 11106   · cmul 11110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-mulcl 11167  ax-mulrcl 11168  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rrecex 11177  ax-cnre 11178
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404
This theorem is referenced by:  nnmul1com  41640  remulinvcom  41760  sn-0tie0  41767
  Copyright terms: Public domain W3C validator