| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1t1e1ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 1t1e1 12319 using a different set of axioms (add ax-mulrcl 11107, ax-i2m1 11112, ax-1ne0 11113, ax-rrecex 11116 and remove ax-resscn 11101, ax-mulcom 11108, ax-mulass 11110, ax-distr 11111). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1t1e1ALT | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11150 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-1rid 11114 | . 2 ⊢ (1 ∈ ℝ → (1 · 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: nnmul1com 42252 remulinvcom 42414 sn-0tie0 42432 |
| Copyright terms: Public domain | W3C validator |