| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1t1e1ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of 1t1e1 12282 using a different set of axioms (add ax-mulrcl 11069, ax-i2m1 11074, ax-1ne0 11075, ax-rrecex 11078 and remove ax-resscn 11063, ax-mulcom 11070, ax-mulass 11072, ax-distr 11073). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1t1e1ALT | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | ax-1rid 11076 | . 2 ⊢ (1 ∈ ℝ → (1 · 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: nnmul1com 42374 remulinvcom 42536 sn-0tie0 42554 |
| Copyright terms: Public domain | W3C validator |