![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1t1e1ALT | Structured version Visualization version GIF version |
Description: Alternate proof of 1t1e1 12370 using a different set of axioms (add ax-mulrcl 11168, ax-i2m1 11173, ax-1ne0 11174, ax-rrecex 11177 and remove ax-resscn 11162, ax-mulcom 11169, ax-mulass 11171, ax-distr 11172). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1t1e1ALT | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11210 | . 2 ⊢ 1 ∈ ℝ | |
2 | ax-1rid 11175 | . 2 ⊢ (1 ∈ ℝ → (1 · 1) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7401 ℝcr 11104 1c1 11106 · cmul 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-mulcl 11167 ax-mulrcl 11168 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rrecex 11177 ax-cnre 11178 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 |
This theorem is referenced by: nnmul1com 41640 remulinvcom 41760 sn-0tie0 41767 |
Copyright terms: Public domain | W3C validator |