Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegneg Structured version   Visualization version   GIF version

Theorem renegneg 42407
Description: A real number is equal to the negative of its negative. Compare negneg 11479. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
renegneg (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)

Proof of Theorem renegneg
StepHypRef Expression
1 rernegcl 42366 . . 3 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
2 rernegcl 42366 . . 3 ((0 − 𝐴) ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
4 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
5 renegid 42368 . . 3 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
6 elre0re 42249 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
75, 6eqeltrd 2829 . 2 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) ∈ ℝ)
8 readdrid 42405 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
9 repncan3 42378 . . . . . 6 (((0 − 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
101, 6, 9syl2anc 584 . . . . 5 (𝐴 ∈ ℝ → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
1110oveq2d 7406 . . . 4 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (𝐴 + 0))
12 readdlid 42398 . . . 4 (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
138, 11, 123eqtr4d 2775 . . 3 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (0 + 𝐴))
14 recn 11165 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
151recnd 11209 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
163recnd 11209 . . . 4 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℂ)
1714, 15, 16addassd 11203 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))))
185oveq1d 7405 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + 𝐴) = (0 + 𝐴))
1913, 17, 183eqtr4d 2775 . 2 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴))
20 readdcan 11355 . . 3 (((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) → (((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴) ↔ (0 − (0 − 𝐴)) = 𝐴))
2120biimpa 476 . 2 ((((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴)) → (0 − (0 − 𝐴)) = 𝐴)
223, 4, 7, 19, 21syl31anc 1375 1 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   cresub 42360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-2 12256  df-3 12257  df-resub 42361
This theorem is referenced by:  rei4  42419  zmulcomlem  42462  zmulcom  42463  sn-0lt1  42470
  Copyright terms: Public domain W3C validator