Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegneg | Structured version Visualization version GIF version |
Description: A real number is equal to the negative of its negative. Compare negneg 11201. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
renegneg | ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rernegcl 40275 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
2 | rernegcl 40275 | . . 3 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
5 | renegid 40277 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
6 | elre0re 40212 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
7 | 5, 6 | eqeltrd 2839 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) |
8 | readdid1 40313 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
9 | repncan3 40287 | . . . . . 6 ⊢ (((0 −ℝ 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) | |
10 | 1, 6, 9 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) |
11 | 10 | oveq2d 7271 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (𝐴 + 0)) |
12 | readdid2 40307 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
13 | 8, 11, 12 | 3eqtr4d 2788 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (0 + 𝐴)) |
14 | recn 10892 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 1 | recnd 10934 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
16 | 3 | recnd 10934 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℂ) |
17 | 14, 15, 16 | addassd 10928 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))))) |
18 | 5 | oveq1d 7270 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) = (0 + 𝐴)) |
19 | 13, 17, 18 | 3eqtr4d 2788 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) |
20 | readdcan 11079 | . . 3 ⊢ (((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) → (((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) ↔ (0 −ℝ (0 −ℝ 𝐴)) = 𝐴)) | |
21 | 20 | biimpa 476 | . 2 ⊢ ((((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
22 | 3, 4, 7, 19, 21 | syl31anc 1371 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 −ℝ cresub 40269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-2 11966 df-3 11967 df-resub 40270 |
This theorem is referenced by: rei4 40326 sn-0lt1 40353 |
Copyright terms: Public domain | W3C validator |