![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegneg | Structured version Visualization version GIF version |
Description: A real number is equal to the negative of its negative. Compare negneg 11515. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
renegneg | ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rernegcl 41547 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
2 | rernegcl 41547 | . . 3 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
5 | renegid 41549 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
6 | elre0re 41478 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
7 | 5, 6 | eqeltrd 2832 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) |
8 | readdrid 41585 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
9 | repncan3 41559 | . . . . . 6 ⊢ (((0 −ℝ 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) | |
10 | 1, 6, 9 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) |
11 | 10 | oveq2d 7428 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (𝐴 + 0)) |
12 | readdlid 41579 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
13 | 8, 11, 12 | 3eqtr4d 2781 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (0 + 𝐴)) |
14 | recn 11204 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 1 | recnd 11247 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
16 | 3 | recnd 11247 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℂ) |
17 | 14, 15, 16 | addassd 11241 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))))) |
18 | 5 | oveq1d 7427 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) = (0 + 𝐴)) |
19 | 13, 17, 18 | 3eqtr4d 2781 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) |
20 | readdcan 11393 | . . 3 ⊢ (((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) → (((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) ↔ (0 −ℝ (0 −ℝ 𝐴)) = 𝐴)) | |
21 | 20 | biimpa 476 | . 2 ⊢ ((((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
22 | 3, 4, 7, 19, 21 | syl31anc 1372 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℝcr 11113 0cc0 11114 + caddc 11117 −ℝ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-2 12280 df-3 12281 df-resub 41542 |
This theorem is referenced by: rei4 41599 zmulcomlem 41631 zmulcom 41632 sn-0lt1 41638 |
Copyright terms: Public domain | W3C validator |