Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegneg Structured version   Visualization version   GIF version

Theorem renegneg 42504
Description: A real number is equal to the negative of its negative. Compare negneg 11411. (Contributed by SN, 13-Feb-2024.)
Assertion
Ref Expression
renegneg (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)

Proof of Theorem renegneg
StepHypRef Expression
1 rernegcl 42463 . . 3 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
2 rernegcl 42463 . . 3 ((0 − 𝐴) ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
31, 2syl 17 . 2 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℝ)
4 id 22 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
5 renegid 42465 . . 3 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
6 elre0re 42346 . . 3 (𝐴 ∈ ℝ → 0 ∈ ℝ)
75, 6eqeltrd 2831 . 2 (𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) ∈ ℝ)
8 readdrid 42502 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
9 repncan3 42475 . . . . . 6 (((0 − 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
101, 6, 9syl2anc 584 . . . . 5 (𝐴 ∈ ℝ → ((0 − 𝐴) + (0 − (0 − 𝐴))) = 0)
1110oveq2d 7362 . . . 4 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (𝐴 + 0))
12 readdlid 42495 . . . 4 (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
138, 11, 123eqtr4d 2776 . . 3 (𝐴 ∈ ℝ → (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))) = (0 + 𝐴))
14 recn 11096 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
151recnd 11140 . . . 4 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℂ)
163recnd 11140 . . . 4 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) ∈ ℂ)
1714, 15, 16addassd 11134 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = (𝐴 + ((0 − 𝐴) + (0 − (0 − 𝐴)))))
185oveq1d 7361 . . 3 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + 𝐴) = (0 + 𝐴))
1913, 17, 183eqtr4d 2776 . 2 (𝐴 ∈ ℝ → ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴))
20 readdcan 11287 . . 3 (((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) → (((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴) ↔ (0 − (0 − 𝐴)) = 𝐴))
2120biimpa 476 . 2 ((((0 − (0 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 − 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 − 𝐴)) + (0 − (0 − 𝐴))) = ((𝐴 + (0 − 𝐴)) + 𝐴)) → (0 − (0 − 𝐴)) = 𝐴)
223, 4, 7, 19, 21syl31anc 1375 1 (𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11005  0cc0 11006   + caddc 11009   cresub 42457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-2 12188  df-3 12189  df-resub 42458
This theorem is referenced by:  rei4  42516  zmulcomlem  42559  zmulcom  42560  sn-0lt1  42567
  Copyright terms: Public domain W3C validator