Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegneg | Structured version Visualization version GIF version |
Description: A real number is equal to the negative of its negative. Compare negneg 11271. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
renegneg | ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rernegcl 40354 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
2 | rernegcl 40354 | . . 3 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
5 | renegid 40356 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
6 | elre0re 40291 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
7 | 5, 6 | eqeltrd 2839 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) |
8 | readdid1 40392 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
9 | repncan3 40366 | . . . . . 6 ⊢ (((0 −ℝ 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) | |
10 | 1, 6, 9 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) |
11 | 10 | oveq2d 7291 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (𝐴 + 0)) |
12 | readdid2 40386 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
13 | 8, 11, 12 | 3eqtr4d 2788 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (0 + 𝐴)) |
14 | recn 10961 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 1 | recnd 11003 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
16 | 3 | recnd 11003 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℂ) |
17 | 14, 15, 16 | addassd 10997 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))))) |
18 | 5 | oveq1d 7290 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) = (0 + 𝐴)) |
19 | 13, 17, 18 | 3eqtr4d 2788 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) |
20 | readdcan 11149 | . . 3 ⊢ (((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) → (((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) ↔ (0 −ℝ (0 −ℝ 𝐴)) = 𝐴)) | |
21 | 20 | biimpa 477 | . 2 ⊢ ((((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
22 | 3, 4, 7, 19, 21 | syl31anc 1372 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 0cc0 10871 + caddc 10874 −ℝ cresub 40348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-2 12036 df-3 12037 df-resub 40349 |
This theorem is referenced by: rei4 40405 sn-0lt1 40432 |
Copyright terms: Public domain | W3C validator |