![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegneg | Structured version Visualization version GIF version |
Description: A real number is equal to the negative of its negative. Compare negneg 11534. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
renegneg | ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rernegcl 41920 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
2 | rernegcl 41920 | . . 3 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
5 | renegid 41922 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
6 | elre0re 41830 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
7 | 5, 6 | eqeltrd 2829 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) |
8 | readdrid 41958 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
9 | repncan3 41932 | . . . . . 6 ⊢ (((0 −ℝ 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) | |
10 | 1, 6, 9 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) |
11 | 10 | oveq2d 7430 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (𝐴 + 0)) |
12 | readdlid 41952 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
13 | 8, 11, 12 | 3eqtr4d 2778 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (0 + 𝐴)) |
14 | recn 11222 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 1 | recnd 11266 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
16 | 3 | recnd 11266 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℂ) |
17 | 14, 15, 16 | addassd 11260 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))))) |
18 | 5 | oveq1d 7429 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) = (0 + 𝐴)) |
19 | 13, 17, 18 | 3eqtr4d 2778 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) |
20 | readdcan 11412 | . . 3 ⊢ (((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) → (((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) ↔ (0 −ℝ (0 −ℝ 𝐴)) = 𝐴)) | |
21 | 20 | biimpa 476 | . 2 ⊢ ((((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
22 | 3, 4, 7, 19, 21 | syl31anc 1371 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℝcr 11131 0cc0 11132 + caddc 11135 −ℝ cresub 41914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-2 12299 df-3 12300 df-resub 41915 |
This theorem is referenced by: rei4 41972 zmulcomlem 42004 zmulcom 42005 sn-0lt1 42011 |
Copyright terms: Public domain | W3C validator |