Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegneg | Structured version Visualization version GIF version |
Description: A real number is equal to the negative of its negative. Compare negneg 11014. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
renegneg | ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rernegcl 39931 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
2 | rernegcl 39931 | . . 3 ⊢ ((0 −ℝ 𝐴) ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ) |
4 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
5 | renegid 39933 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) | |
6 | elre0re 39867 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
7 | 5, 6 | eqeltrd 2833 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) |
8 | readdid1 39969 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | |
9 | repncan3 39943 | . . . . . 6 ⊢ (((0 −ℝ 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) | |
10 | 1, 6, 9 | syl2anc 587 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))) = 0) |
11 | 10 | oveq2d 7186 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (𝐴 + 0)) |
12 | readdid2 39963 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | |
13 | 8, 11, 12 | 3eqtr4d 2783 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴)))) = (0 + 𝐴)) |
14 | recn 10705 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 1 | recnd 10747 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℂ) |
16 | 3 | recnd 10747 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) ∈ ℂ) |
17 | 14, 15, 16 | addassd 10741 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = (𝐴 + ((0 −ℝ 𝐴) + (0 −ℝ (0 −ℝ 𝐴))))) |
18 | 5 | oveq1d 7185 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) = (0 + 𝐴)) |
19 | 13, 17, 18 | 3eqtr4d 2783 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) |
20 | readdcan 10892 | . . 3 ⊢ (((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) → (((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴) ↔ (0 −ℝ (0 −ℝ 𝐴)) = 𝐴)) | |
21 | 20 | biimpa 480 | . 2 ⊢ ((((0 −ℝ (0 −ℝ 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 + (0 −ℝ 𝐴)) ∈ ℝ) ∧ ((𝐴 + (0 −ℝ 𝐴)) + (0 −ℝ (0 −ℝ 𝐴))) = ((𝐴 + (0 −ℝ 𝐴)) + 𝐴)) → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
22 | 3, 4, 7, 19, 21 | syl31anc 1374 | 1 ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 (class class class)co 7170 ℝcr 10614 0cc0 10615 + caddc 10618 −ℝ cresub 39925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-ltxr 10758 df-2 11779 df-3 11780 df-resub 39926 |
This theorem is referenced by: rei4 39982 sn-0lt1 40009 |
Copyright terms: Public domain | W3C validator |