Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpmapat Structured version   Visualization version   GIF version

Theorem elpmapat 39125
Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapat.a 𝐴 = (Atoms‘𝐾)
pmapat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
elpmapat ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑋 ∈ (𝑀𝑃) ↔ 𝑋 = 𝑃))

Proof of Theorem elpmapat
StepHypRef Expression
1 pmapat.a . . . 4 𝐴 = (Atoms‘𝐾)
2 pmapat.m . . . 4 𝑀 = (pmap‘𝐾)
31, 2pmapat 39124 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})
43eleq2d 2811 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑋 ∈ (𝑀𝑃) ↔ 𝑋 ∈ {𝑃}))
5 elsn2g 4658 . . 3 (𝑃𝐴 → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃))
65adantl 481 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃))
74, 6bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑋 ∈ (𝑀𝑃) ↔ 𝑋 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {csn 4620  cfv 6533  Atomscatm 38623  HLchlt 38710  pmapcpmap 38858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-proset 18250  df-poset 18268  df-plt 18285  df-glb 18302  df-p0 18380  df-lat 18387  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-pmap 38865
This theorem is referenced by:  pmapjat1  39214
  Copyright terms: Public domain W3C validator