| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmapat | Structured version Visualization version GIF version | ||
| Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| elpmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 = 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 3 | 1, 2 | pmapat 39724 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
| 4 | 3 | eleq2d 2819 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 ∈ {𝑃})) |
| 5 | elsn2g 4644 | . . 3 ⊢ (𝑃 ∈ 𝐴 → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃)) | |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃)) |
| 7 | 4, 6 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 = 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4606 ‘cfv 6541 Atomscatm 39223 HLchlt 39310 pmapcpmap 39458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-proset 18310 df-poset 18329 df-plt 18344 df-glb 18361 df-p0 18439 df-lat 18446 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-pmap 39465 |
| This theorem is referenced by: pmapjat1 39814 |
| Copyright terms: Public domain | W3C validator |