![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmapat | Structured version Visualization version GIF version |
Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
elpmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
3 | 1, 2 | pmapat 39760 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
4 | 3 | eleq2d 2827 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 ∈ {𝑃})) |
5 | elsn2g 4672 | . . 3 ⊢ (𝑃 ∈ 𝐴 → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃)) | |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ {𝑃} ↔ 𝑋 = 𝑃)) |
7 | 4, 6 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑋 ∈ (𝑀‘𝑃) ↔ 𝑋 = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4634 ‘cfv 6569 Atomscatm 39259 HLchlt 39346 pmapcpmap 39494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-proset 18361 df-poset 18380 df-plt 18397 df-glb 18414 df-p0 18492 df-lat 18499 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-pmap 39501 |
This theorem is referenced by: pmapjat1 39850 |
Copyright terms: Public domain | W3C validator |