![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmapat | Structured version Visualization version GIF version |
Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapat.a | β’ π΄ = (AtomsβπΎ) |
pmapat.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
elpmapat | β’ ((πΎ β HL β§ π β π΄) β (π β (πβπ) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapat.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | pmapat.m | . . . 4 β’ π = (pmapβπΎ) | |
3 | 1, 2 | pmapat 38938 | . . 3 β’ ((πΎ β HL β§ π β π΄) β (πβπ) = {π}) |
4 | 3 | eleq2d 2818 | . 2 β’ ((πΎ β HL β§ π β π΄) β (π β (πβπ) β π β {π})) |
5 | elsn2g 4666 | . . 3 β’ (π β π΄ β (π β {π} β π = π)) | |
6 | 5 | adantl 481 | . 2 β’ ((πΎ β HL β§ π β π΄) β (π β {π} β π = π)) |
7 | 4, 6 | bitrd 279 | 1 β’ ((πΎ β HL β§ π β π΄) β (π β (πβπ) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 {csn 4628 βcfv 6543 Atomscatm 38437 HLchlt 38524 pmapcpmap 38672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-proset 18253 df-poset 18271 df-plt 18288 df-glb 18305 df-p0 18383 df-lat 18390 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-pmap 38679 |
This theorem is referenced by: pmapjat1 39028 |
Copyright terms: Public domain | W3C validator |