MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptiniseg Structured version   Visualization version   GIF version

Theorem mptiniseg 6270
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptiniseg (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Distinct variable groups:   𝑥,𝐶   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21mptpreima 6269 . 2 (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 ∈ {𝐶}}
3 elsn2g 4686 . . 3 (𝐶𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶))
43rabbidv 3451 . 2 (𝐶𝑉 → {𝑥𝐴𝐵 ∈ {𝐶}} = {𝑥𝐴𝐵 = 𝐶})
52, 4eqtrid 2792 1 (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  {csn 4648  cmpt 5249  ccnv 5699  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  ramub1lem1  17073  frlmsslss  21817  symgtgp  24135  csscld  25302  clsocv  25303  sqff1o  27243  dchrfi  27317  poimirlem30  37610  ftc1anclem6  37658  pwssplit4  43046  pwslnmlem2  43050
  Copyright terms: Public domain W3C validator