Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptiniseg | Structured version Visualization version GIF version |
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptiniseg | ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | mptpreima 6071 | . 2 ⊢ (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} |
3 | elsn2g 4563 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶)) | |
4 | 3 | rabbidv 3392 | . 2 ⊢ (𝐶 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
5 | 2, 4 | syl5eq 2805 | 1 ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 {csn 4525 ↦ cmpt 5115 ◡ccnv 5526 “ cima 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-mpt 5116 df-xp 5533 df-rel 5534 df-cnv 5535 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 |
This theorem is referenced by: ramub1lem1 16422 frlmsslss 20544 symgtgp 22811 csscld 23954 clsocv 23955 sqff1o 25871 dchrfi 25943 poimirlem30 35393 ftc1anclem6 35441 pwssplit4 40434 pwslnmlem2 40438 |
Copyright terms: Public domain | W3C validator |