| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptiniseg | Structured version Visualization version GIF version | ||
| Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptiniseg | ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | mptpreima 6214 | . 2 ⊢ (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} |
| 3 | elsn2g 4631 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶)) | |
| 4 | 3 | rabbidv 3416 | . 2 ⊢ (𝐶 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
| 5 | 2, 4 | eqtrid 2777 | 1 ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 {csn 4592 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: ramub1lem1 17004 frlmsslss 21690 symgtgp 24000 csscld 25156 clsocv 25157 sqff1o 27099 dchrfi 27173 poimirlem30 37651 ftc1anclem6 37699 pwssplit4 43085 pwslnmlem2 43089 |
| Copyright terms: Public domain | W3C validator |