![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptiniseg | Structured version Visualization version GIF version |
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptiniseg | ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | mptpreima 6260 | . 2 ⊢ (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} |
3 | elsn2g 4669 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶)) | |
4 | 3 | rabbidv 3441 | . 2 ⊢ (𝐶 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
5 | 2, 4 | eqtrid 2787 | 1 ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 {csn 4631 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: ramub1lem1 17060 frlmsslss 21812 symgtgp 24130 csscld 25297 clsocv 25298 sqff1o 27240 dchrfi 27314 poimirlem30 37637 ftc1anclem6 37685 pwssplit4 43078 pwslnmlem2 43082 |
Copyright terms: Public domain | W3C validator |