Proof of Theorem ply1termlem
| Step | Hyp | Ref
| Expression |
| 1 | | ply1term.1 |
. 2
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) |
| 2 | | simplr 768 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℕ0) |
| 3 | | nn0uz 12899 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | eleqtrdi 2845 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
(ℤ≥‘0)) |
| 5 | | fzss1 13585 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑁...𝑁) ⊆ (0...𝑁)) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑁...𝑁) ⊆ (0...𝑁)) |
| 7 | | elfz1eq 13557 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 = 𝑁) |
| 9 | | iftrue 4511 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
| 11 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝐴 ∈
ℂ) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝐴 ∈ ℂ) |
| 13 | 10, 12 | eqeltrd 2835 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ) |
| 14 | | simplr 768 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑧 ∈ ℂ) |
| 15 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑁 ∈
ℕ0) |
| 16 | 8, 15 | eqeltrd 2835 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
| 17 | 14, 16 | expcld 14169 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
| 18 | 13, 17 | mulcld 11260 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) ∈ ℂ) |
| 19 | | eldifn 4112 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
| 20 | 19 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
| 21 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈
ℕ0) |
| 22 | 21 | nn0zd 12619 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℤ) |
| 23 | | fzsn 13588 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 24 | 23 | eleq2d 2821 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 ∈ {𝑁})) |
| 25 | | elsn2g 4645 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ {𝑁} ↔ 𝑘 = 𝑁)) |
| 26 | 24, 25 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
| 27 | 22, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
| 28 | 20, 27 | mtbid 324 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 = 𝑁) |
| 29 | 28 | iffalsed 4516 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → if(𝑘 = 𝑁, 𝐴, 0) = 0) |
| 30 | 29 | oveq1d 7425 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 31 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑧 ∈
ℂ) |
| 32 | | eldifi 4111 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 33 | | elfznn0 13642 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
| 35 | | expcl 14102 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 36 | 31, 34, 35 | syl2an 596 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
| 37 | 36 | mul02d 11438 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
| 38 | 30, 37 | eqtrd 2771 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = 0) |
| 39 | | fzfid 13996 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (0...𝑁) ∈
Fin) |
| 40 | 6, 18, 38, 39 | fsumss 15746 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) |
| 41 | 2 | nn0zd 12619 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℤ) |
| 42 | 31, 2 | expcld 14169 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑧↑𝑁) ∈
ℂ) |
| 43 | 11, 42 | mulcld 11260 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) |
| 44 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝑧↑𝑘) = (𝑧↑𝑁)) |
| 45 | 9, 44 | oveq12d 7428 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
| 46 | 45 | fsum1 15768 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
| 47 | 41, 43, 46 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
| 48 | 40, 47 | eqtr3d 2773 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
| 49 | 48 | mpteq2dva 5219 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑧 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁)))) |
| 50 | 1, 49 | eqtr4id 2790 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐹 = (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |