Proof of Theorem ply1termlem
Step | Hyp | Ref
| Expression |
1 | | ply1term.1 |
. 2
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) |
2 | | simplr 766 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℕ0) |
3 | | nn0uz 12620 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleqtrdi 2849 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
(ℤ≥‘0)) |
5 | | fzss1 13295 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑁...𝑁) ⊆ (0...𝑁)) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑁...𝑁) ⊆ (0...𝑁)) |
7 | | elfz1eq 13267 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁) |
8 | 7 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 = 𝑁) |
9 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴) |
11 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝐴 ∈
ℂ) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝐴 ∈ ℂ) |
13 | 10, 12 | eqeltrd 2839 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ) |
14 | | simplr 766 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑧 ∈ ℂ) |
15 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑁 ∈
ℕ0) |
16 | 8, 15 | eqeltrd 2839 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
17 | 14, 16 | expcld 13864 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
18 | 13, 17 | mulcld 10995 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ (𝑁...𝑁)) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) ∈ ℂ) |
19 | | eldifn 4062 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
20 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 ∈ (𝑁...𝑁)) |
21 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈
ℕ0) |
22 | 21 | nn0zd 12424 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℤ) |
23 | | fzsn 13298 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
24 | 23 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 ∈ {𝑁})) |
25 | | elsn2g 4599 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ {𝑁} ↔ 𝑘 = 𝑁)) |
26 | 24, 25 | bitrd 278 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
27 | 22, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁)) |
28 | 20, 27 | mtbid 324 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 = 𝑁) |
29 | 28 | iffalsed 4470 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → if(𝑘 = 𝑁, 𝐴, 0) = 0) |
30 | 29 | oveq1d 7290 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
31 | | simpr 485 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑧 ∈
ℂ) |
32 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ (0...𝑁)) |
33 | | elfznn0 13349 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ ℕ0) |
35 | | expcl 13800 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
36 | 31, 34, 35 | syl2an 596 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
37 | 36 | mul02d 11173 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
38 | 30, 37 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = 0) |
39 | | fzfid 13693 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (0...𝑁) ∈
Fin) |
40 | 6, 18, 38, 39 | fsumss 15437 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) |
41 | 2 | nn0zd 12424 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ 𝑁 ∈
ℤ) |
42 | 31, 2 | expcld 13864 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝑧↑𝑁) ∈
ℂ) |
43 | 11, 42 | mulcld 10995 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) |
44 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝑧↑𝑘) = (𝑧↑𝑁)) |
45 | 9, 44 | oveq12d 7293 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
46 | 45 | fsum1 15459 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ (𝐴 · (𝑧↑𝑁)) ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
47 | 41, 43, 46 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
48 | 40, 47 | eqtr3d 2780 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑧 ∈ ℂ)
→ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑁))) |
49 | 48 | mpteq2dva 5174 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑧 ∈ ℂ
↦ Σ𝑘 ∈
(0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁)))) |
50 | 1, 49 | eqtr4id 2797 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐹 = (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |