MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1termlem Structured version   Visualization version   GIF version

Theorem ply1termlem 25269
Description: Lemma for ply1term 25270. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1termlem ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑘)

Proof of Theorem ply1termlem
StepHypRef Expression
1 ply1term.1 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
2 simplr 765 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
3 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
42, 3eleqtrdi 2849 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
5 fzss1 13224 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑁) ⊆ (0...𝑁))
64, 5syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑁...𝑁) ⊆ (0...𝑁))
7 elfz1eq 13196 . . . . . . . . 9 (𝑘 ∈ (𝑁...𝑁) → 𝑘 = 𝑁)
87adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 = 𝑁)
9 iftrue 4462 . . . . . . . 8 (𝑘 = 𝑁 → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴)
108, 9syl 17 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) = 𝐴)
11 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1211adantr 480 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝐴 ∈ ℂ)
1310, 12eqeltrd 2839 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ ℂ)
14 simplr 765 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑧 ∈ ℂ)
152adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑁 ∈ ℕ0)
168, 15eqeltrd 2839 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → 𝑘 ∈ ℕ0)
1714, 16expcld 13792 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → (𝑧𝑘) ∈ ℂ)
1813, 17mulcld 10926 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (𝑁...𝑁)) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) ∈ ℂ)
19 eldifn 4058 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → ¬ 𝑘 ∈ (𝑁...𝑁))
2019adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 ∈ (𝑁...𝑁))
212adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℕ0)
2221nn0zd 12353 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → 𝑁 ∈ ℤ)
23 fzsn 13227 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
2423eleq2d 2824 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 ∈ {𝑁}))
25 elsn2g 4596 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑘 ∈ {𝑁} ↔ 𝑘 = 𝑁))
2624, 25bitrd 278 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
2722, 26syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑘 ∈ (𝑁...𝑁) ↔ 𝑘 = 𝑁))
2820, 27mtbid 323 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → ¬ 𝑘 = 𝑁)
2928iffalsed 4467 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → if(𝑘 = 𝑁, 𝐴, 0) = 0)
3029oveq1d 7270 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
31 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
32 eldifi 4057 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ (0...𝑁))
33 elfznn0 13278 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
3432, 33syl 17 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁)) → 𝑘 ∈ ℕ0)
35 expcl 13728 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3631, 34, 35syl2an 595 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (𝑧𝑘) ∈ ℂ)
3736mul02d 11103 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (0 · (𝑧𝑘)) = 0)
3830, 37eqtrd 2778 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (𝑁...𝑁))) → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = 0)
39 fzfid 13621 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
406, 18, 38, 39fsumss 15365 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)))
412nn0zd 12353 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
4231, 2expcld 13792 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑧𝑁) ∈ ℂ)
4311, 42mulcld 10926 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧𝑁)) ∈ ℂ)
44 oveq2 7263 . . . . . . 7 (𝑘 = 𝑁 → (𝑧𝑘) = (𝑧𝑁))
459, 44oveq12d 7273 . . . . . 6 (𝑘 = 𝑁 → (if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
4645fsum1 15387 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝐴 · (𝑧𝑁)) ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
4741, 43, 46syl2anc 583 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (𝑁...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
4840, 47eqtr3d 2780 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘)) = (𝐴 · (𝑧𝑁)))
4948mpteq2dva 5170 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁))))
501, 49eqtr4id 2798 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883  ifcif 4456  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  ply1term  25270  coe1termlem  25324
  Copyright terms: Public domain W3C validator