| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsn2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elsn2g 4616 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4578 |
| This theorem is referenced by: fparlem1 8045 fparlem2 8046 el1o 8413 fin1a2lem11 10304 fin1a2lem12 10305 elnn0 12386 elxnn0 12459 elfzp1 13477 fsumss 15632 fprodss 15855 elhoma 17939 rnglidl0 21136 islpidl 21232 zrhrhmb 21417 rest0 23054 qustgphaus 24008 taylfval 26264 eqscut3 27735 elch0 31198 atoml2i 32327 prmidl0 33387 bj-eltag 36955 bj-rest10b 37067 dibopelvalN 41126 dibopelval2 41128 aks4d1p1p4 42048 climrec 45588 |
| Copyright terms: Public domain | W3C validator |