![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
elsn2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elsn2g 4686 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sn 4649 |
This theorem is referenced by: fparlem1 8153 fparlem2 8154 el1o 8551 fin1a2lem11 10479 fin1a2lem12 10480 elnn0 12555 elxnn0 12627 elfzp1 13634 fsumss 15773 fprodss 15996 elhoma 18099 rnglidl0 21262 islpidl 21358 zrhrhmb 21544 rest0 23198 qustgphaus 24152 taylfval 26418 elch0 31286 atoml2i 32415 prmidl0 33443 bj-eltag 36943 bj-rest10b 37055 dibopelvalN 41100 dibopelval2 41102 aks4d1p1p4 42028 climrec 45524 |
Copyright terms: Public domain | W3C validator |