| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsn2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elsn2g 4624 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4586 |
| This theorem is referenced by: fparlem1 8068 fparlem2 8069 el1o 8436 fin1a2lem11 10339 fin1a2lem12 10340 elnn0 12420 elxnn0 12493 elfzp1 13511 fsumss 15667 fprodss 15890 elhoma 17974 rnglidl0 21171 islpidl 21267 zrhrhmb 21452 rest0 23089 qustgphaus 24043 taylfval 26299 eqscut3 27770 elch0 31233 atoml2i 32362 prmidl0 33414 bj-eltag 36958 bj-rest10b 37070 dibopelvalN 41130 dibopelval2 41132 aks4d1p1p4 42052 climrec 45594 |
| Copyright terms: Public domain | W3C validator |