| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsn2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elsn2g 4624 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4586 |
| This theorem is referenced by: fparlem1 8068 fparlem2 8069 el1o 8436 fin1a2lem11 10339 fin1a2lem12 10340 elnn0 12420 elxnn0 12493 elfzp1 13511 fsumss 15667 fprodss 15890 elhoma 17970 rnglidl0 21115 islpidl 21211 zrhrhmb 21396 rest0 23032 qustgphaus 23986 taylfval 26242 elch0 31156 atoml2i 32285 prmidl0 33394 bj-eltag 36938 bj-rest10b 37050 dibopelvalN 41110 dibopelval2 41112 aks4d1p1p4 42032 climrec 45574 |
| Copyright terms: Public domain | W3C validator |