![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
elsn2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elsn2g 4400 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 Vcvv 3383 {csn 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-sn 4367 |
This theorem is referenced by: fparlem1 7512 fparlem2 7513 el1o 7817 fin1a2lem11 9518 fin1a2lem12 9519 elnn0 11578 elxnn0 11650 elfzp1 12641 fsumss 14793 fprodss 15011 elhoma 16992 islpidl 19565 zrhrhmb 20177 rest0 21298 qustgphaus 22250 taylfval 24450 elch0 28627 atoml2i 29758 bj-eltag 33448 bj-rest10b 33526 dibopelvalN 37155 dibopelval2 37157 climrec 40566 |
Copyright terms: Public domain | W3C validator |