| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsn2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elsn2g 4614 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sn 4574 |
| This theorem is referenced by: fparlem1 8042 fparlem2 8043 el1o 8410 fin1a2lem11 10301 fin1a2lem12 10302 elnn0 12383 elxnn0 12456 elfzp1 13474 fsumss 15632 fprodss 15855 elhoma 17939 rnglidl0 21166 islpidl 21262 zrhrhmb 21447 rest0 23084 qustgphaus 24038 taylfval 26293 eqscut3 27765 elch0 31234 atoml2i 32363 prmidl0 33415 bj-eltag 37021 bj-rest10b 37133 dibopelvalN 41252 dibopelval2 41254 aks4d1p1p4 42174 climrec 45713 |
| Copyright terms: Public domain | W3C validator |