Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
elsn2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elsn2g 4596 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sn 4559 |
This theorem is referenced by: fparlem1 7923 fparlem2 7924 el1o 8291 fin1a2lem11 10097 fin1a2lem12 10098 elnn0 12165 elxnn0 12237 elfzp1 13235 fsumss 15365 fprodss 15586 elhoma 17663 islpidl 20430 zrhrhmb 20624 rest0 22228 qustgphaus 23182 taylfval 25423 elch0 29517 atoml2i 30646 prmidl0 31528 bj-eltag 35094 bj-rest10b 35187 dibopelvalN 39084 dibopelval2 39086 aks4d1p1p4 40007 climrec 43034 |
Copyright terms: Public domain | W3C validator |