| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsn2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elsn2g 4645 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sn 4607 |
| This theorem is referenced by: fparlem1 8116 fparlem2 8117 el1o 8512 fin1a2lem11 10429 fin1a2lem12 10430 elnn0 12508 elxnn0 12581 elfzp1 13596 fsumss 15746 fprodss 15969 elhoma 18050 rnglidl0 21195 islpidl 21291 zrhrhmb 21476 rest0 23112 qustgphaus 24066 taylfval 26323 elch0 31240 atoml2i 32369 prmidl0 33470 bj-eltag 37000 bj-rest10b 37112 dibopelvalN 41167 dibopelval2 41169 aks4d1p1p4 42089 climrec 45599 |
| Copyright terms: Public domain | W3C validator |