![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn2 | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
elsn2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elsn2 | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elsn2g 4666 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sn 4629 |
This theorem is referenced by: fparlem1 8097 fparlem2 8098 el1o 8494 fin1a2lem11 10404 fin1a2lem12 10405 elnn0 12473 elxnn0 12545 elfzp1 13550 fsumss 15670 fprodss 15891 elhoma 17981 islpidl 20883 zrhrhmb 21059 rest0 22672 qustgphaus 23626 taylfval 25870 elch0 30502 atoml2i 31631 prmidl0 32564 bj-eltag 35853 bj-rest10b 35965 dibopelvalN 40009 dibopelval2 40011 aks4d1p1p4 40931 climrec 44309 rnglidl0 46742 |
Copyright terms: Public domain | W3C validator |