Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem2 Structured version   Visualization version   GIF version

Theorem dirkercncflem2 42274
 Description: Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem2.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem2.f 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
dirkercncflem2.g 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem2.yne0 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
dirkercncflem2.h 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
dirkercncflem2.i 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
dirkercncflem2.l 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
dirkercncflem2.n (𝜑𝑁 ∈ ℕ)
dirkercncflem2.y (𝜑𝑌 ∈ (𝐴(,)𝐵))
dirkercncflem2.ymod (𝜑 → (𝑌 mod (2 · π)) = 0)
dirkercncflem2.11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
Assertion
Ref Expression
dirkercncflem2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Distinct variable groups:   𝑤,𝐴,𝑦   𝑤,𝐵,𝑦   𝑦,𝐷   𝑤,𝐹,𝑦   𝑤,𝐺,𝑦   𝑤,𝐻,𝑦   𝑤,𝐼,𝑦   𝑦,𝐿   𝑤,𝑁,𝑦   𝑤,𝑌,𝑦   𝑦,𝑛   𝜑,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑤,𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐿(𝑤,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem2
StepHypRef Expression
1 difss 4112 . . . . 5 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ (𝐴(,)𝐵)
2 ioossre 12793 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
31, 2sstri 3980 . . . 4 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ
43a1i 11 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5 dirkercncflem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℕ)
76nnred 11647 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℝ)
8 halfre 11845 . . . . . . . 8 (1 / 2) ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
107, 9readdcld 10664 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℝ)
114sselda 3971 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
1210, 11remulcld 10665 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℝ)
1312resincld 15491 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℝ)
14 dirkercncflem2.f . . . 4 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
1513, 14fmptd 6876 . . 3 (𝜑𝐹:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
16 2re 11705 . . . . . . 7 2 ∈ ℝ
17 pire 24978 . . . . . . 7 π ∈ ℝ
1816, 17remulcli 10651 . . . . . 6 (2 · π) ∈ ℝ
1918a1i 11 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
2011rehalfcld 11878 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℝ)
2120resincld 15491 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ∈ ℝ)
2219, 21remulcld 10665 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
23 dirkercncflem2.g . . . 4 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
2422, 23fmptd 6876 . . 3 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
25 iooretop 23308 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
2625a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
27 dirkercncflem2.y . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
28 eqid 2826 . . 3 ((𝐴(,)𝐵) ∖ {𝑌}) = ((𝐴(,)𝐵) ∖ {𝑌})
2914a1i 11 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
3029oveq2d 7166 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
31 resmpt 5904 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
323, 31ax-mp 5 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
3332eqcomi 2835 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
3534oveq2d 7166 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
36 ax-resscn 10588 . . . . . . . . . 10 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
385nncnd 11648 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
39 halfcn 11846 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℂ
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 2) ∈ ℂ)
4138, 40addcld 10654 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
4241adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
4337sselda 3971 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43mulcld 10655 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
4544sincld 15478 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
46 eqid 2826 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
4745, 46fmptd 6876 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ)
48 ssid 3993 . . . . . . . . . . 11 ℝ ⊆ ℝ
4948, 3pm3.2i 471 . . . . . . . . . 10 (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ))
51 eqid 2826 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5251tgioo2 23345 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52dvres 24443 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
5437, 47, 50, 53syl21anc 835 . . . . . . . 8 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
55 retop 23304 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
56 rehaus 23341 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Haus
5727elioored 41709 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
58 uniretop 23305 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
5958sncld 21914 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Haus ∧ 𝑌 ∈ ℝ) → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6056, 57, 59sylancr 587 . . . . . . . . . . . 12 (𝜑 → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6158difopn 21577 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ {𝑌} ∈ (Clsd‘(topGen‘ran (,)))) → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
6225, 60, 61sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
63 isopn3i 21625 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6455, 62, 63sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6564reseq2d 5852 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
66 reelprrecn 10623 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
6841adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 + (1 / 2)) ∈ ℂ)
69 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7068, 69mulcld 10655 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
7170sincld 15478 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
72 eqid 2826 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
7371, 72fmptd 6876 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ)
74 ssid 3993 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
7574a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
76 dvsinax 42081 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7741, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7877dmeqd 5773 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
79 eqid 2826 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
8070coscld 15479 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
8168, 80mulcld 10655 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
8279, 81dmmptd 6492 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8378, 82eqtrd 2861 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8436, 83sseqtrrid 4024 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
85 dvres3 24445 . . . . . . . . . . . 12 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
8667, 73, 75, 84, 85syl22anc 836 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
87 resmpt 5904 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8836, 87mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8988oveq2d 7166 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
9077reseq1d 5851 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
91 resmpt 5904 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9236, 91ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
9390, 92syl6eq 2877 . . . . . . . . . . 11 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9486, 89, 933eqtr3d 2869 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9594reseq1d 5851 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
96 resmpt 5904 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
973, 96mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9865, 95, 973eqtrd 2865 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9935, 54, 983eqtrd 2865 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
100 dirkercncflem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
101100a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
102101eqcomd 2832 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = 𝐻)
10330, 99, 1023eqtrd 2865 . . . . . 6 (𝜑 → (ℝ D 𝐹) = 𝐻)
104103dmeqd 5773 . . . . 5 (𝜑 → dom (ℝ D 𝐹) = dom 𝐻)
10511recnd 10663 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
106105, 81syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
107100, 106dmmptd 6492 . . . . 5 (𝜑 → dom 𝐻 = ((𝐴(,)𝐵) ∖ {𝑌}))
108104, 107eqtr2d 2862 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹))
109 eqimss 4027 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
110108, 109syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
111 dirkercncflem2.i . . . . . . . 8 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
112111a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
113 resmpt 5904 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
1143, 113ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
115114eqcomi 2835 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
116115oveq2i 7161 . . . . . . . . . 10 (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
117116a1i 11 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
118 2cn 11706 . . . . . . . . . . . . . 14 2 ∈ ℂ
119 picn 24979 . . . . . . . . . . . . . 14 π ∈ ℂ
120118, 119mulcli 10642 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
121120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (2 · π) ∈ ℂ)
12243halfcld 11876 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 2) ∈ ℂ)
123122sincld 15478 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝑦 / 2)) ∈ ℂ)
124121, 123mulcld 10655 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
125 eqid 2826 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))
126124, 125fmptd 6876 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ)
12751, 52dvres 24443 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12837, 126, 50, 127syl21anc 835 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12964reseq2d 5852 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
13036sseli 3967 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
131 1cnd 10630 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 1 ∈ ℂ)
132 2cnd 11709 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ∈ ℂ)
133 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
134 2ne0 11735 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
135134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ≠ 0)
136131, 132, 133, 135div13d 11434 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = ((𝑦 / 2) · 1))
137 halfcl 11856 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (𝑦 / 2) ∈ ℂ)
138137mulid1d 10652 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 / 2) · 1) = (𝑦 / 2))
139136, 138eqtrd 2861 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = (𝑦 / 2))
140139fveq2d 6673 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (sin‘((1 / 2) · 𝑦)) = (sin‘(𝑦 / 2)))
141140oveq2d 7166 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((2 · π) · (sin‘((1 / 2) · 𝑦))) = ((2 · π) · (sin‘(𝑦 / 2))))
142141eqcomd 2832 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
143130, 142syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
144143adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
145144mpteq2dva 5158 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
146145oveq2d 7166 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
147120a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (2 · π) ∈ ℂ)
14839a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (1 / 2) ∈ ℂ)
149148, 69mulcld 10655 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → ((1 / 2) · 𝑦) ∈ ℂ)
150149sincld 15478 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (sin‘((1 / 2) · 𝑦)) ∈ ℂ)
151147, 150mulcld 10655 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (sin‘((1 / 2) · 𝑦))) ∈ ℂ)
152 eqid 2826 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))
153151, 152fmptd 6876 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ)
154 2cnd 11709 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℂ)
155119a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → π ∈ ℂ)
156154, 155mulcld 10655 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · π) ∈ ℂ)
157 dvasinbx 42089 . . . . . . . . . . . . . . . . . . . 20 (((2 · π) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
158156, 39, 157sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
159 2cnd 11709 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → 2 ∈ ℂ)
160119a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → π ∈ ℂ)
161159, 160, 148mul32d 10844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = ((2 · (1 / 2)) · π))
162134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℂ) → 2 ≠ 0)
163159, 162recidd 11405 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → (2 · (1 / 2)) = 1)
164163oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · (1 / 2)) · π) = (1 · π))
165160mulid2d 10653 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → (1 · π) = π)
166161, 164, 1653eqtrd 2865 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = π)
167139fveq2d 6673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
168167adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
169166, 168oveq12d 7168 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦))) = (π · (cos‘(𝑦 / 2))))
170169mpteq2dva 5158 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
171158, 170eqtrd 2861 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
172171dmeqd 5773 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
173 eqid 2826 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2))))
17469halfcld 11876 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (𝑦 / 2) ∈ ℂ)
175174coscld 15479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝑦 / 2)) ∈ ℂ)
176160, 175mulcld 10655 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
177173, 176dmmptd 6492 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = ℂ)
178172, 177eqtrd 2861 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ℂ)
17936, 178sseqtrrid 4024 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
180 dvres3 24445 . . . . . . . . . . . . . . 15 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))) → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
18167, 153, 75, 179, 180syl22anc 836 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
182 resmpt 5904 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
18336, 182mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
184183oveq2d 7166 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
185171reseq1d 5851 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
186181, 184, 1853eqtr3d 2869 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
187 resmpt 5904 . . . . . . . . . . . . . 14 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
18836, 187ax-mp 5 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2))))
189186, 188syl6eq 2877 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
190146, 189eqtrd 2861 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
191190reseq1d 5851 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
1924resmptd 5907 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
193129, 191, 1923eqtrd 2865 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
194117, 128, 1933eqtrd 2865 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
195194eqcomd 2832 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
19623a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
197196oveq2d 7166 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
198197eqcomd 2832 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D 𝐺))
199112, 195, 1983eqtrrd 2866 . . . . . 6 (𝜑 → (ℝ D 𝐺) = 𝐼)
200199dmeqd 5773 . . . . 5 (𝜑 → dom (ℝ D 𝐺) = dom 𝐼)
201105, 176syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
202111, 201dmmptd 6492 . . . . 5 (𝜑 → dom 𝐼 = ((𝐴(,)𝐵) ∖ {𝑌}))
203200, 202eqtr2d 2862 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺))
204 eqimss 4027 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
205203, 204syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
206105, 70syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
207206ralrimiva 3187 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
208 eqid 2826 . . . . . . . 8 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))
209208fnmpt 6487 . . . . . . 7 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
210207, 209syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
211 eqidd 2827 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
212 simpr 485 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
213212oveq2d 7166 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
214 simpr 485 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
21538adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℂ)
216 1cnd 10630 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
217216halfcld 11876 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℂ)
218215, 217addcld 10654 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℂ)
219 eldifi 4107 . . . . . . . . . . . . . 14 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ (𝐴(,)𝐵))
220219elioored 41709 . . . . . . . . . . . . 13 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℝ)
221220recnd 10663 . . . . . . . . . . . 12 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℂ)
222221adantl 482 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ℂ)
223218, 222mulcld 10655 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
224211, 213, 214, 223fvmptd 6773 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
225 eleq1w 2900 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↔ 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})))
226225anbi2d 628 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ↔ (𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))))
227 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 mod (2 · π)) = (𝑤 mod (2 · π)))
228227neeq1d 3080 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑦 mod (2 · π)) ≠ 0 ↔ (𝑤 mod (2 · π)) ≠ 0))
229226, 228imbi12d 346 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)))
230 eldifi 4107 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
231 elioore 12763 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ)
232230, 231, 1303syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℂ)
233 2cnd 11709 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ∈ ℂ)
234119a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ∈ ℂ)
235134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ≠ 0)
236 0re 10637 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
237 pipos 24980 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
238236, 237gtneii 10746 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ≠ 0)
240232, 233, 234, 235, 239divdiv1d 11441 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
241240eqcomd 2832 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
242241adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
243 dirkercncflem2.yne0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
244243neneqd 3026 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
245105halfcld 11876 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
246 sineq0 25043 . . . . . . . . . . . . . . . . . . 19 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
247245, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
248244, 247mtbid 325 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
249242, 248eqneltrd 2937 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
250 2rp 12389 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
251 pirp 24981 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ+
252 rpmulcl 12407 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
253250, 251, 252mp2an 688 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℝ+
254 mod0 13239 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
25511, 253, 254sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
256249, 255mtbird 326 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 mod (2 · π)) = 0)
257256neqned 3028 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0)
258229, 257chvarv 2410 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)
259258neneqd 3026 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑤 mod (2 · π)) = 0)
260 simpll 763 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝜑)
261 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
262221ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 ∈ ℂ)
26357recnd 10663 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
264263ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑌 ∈ ℂ)
265 0red 10638 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
2665nnred 11647 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
267 1red 10636 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
268267rehalfcld 11878 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ)
269266, 268readdcld 10664 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
2705nngt0d 11680 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑁)
271250a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℝ+)
272271rpreccld 12436 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ+)
273266, 272ltaddrpd 12459 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 < (𝑁 + (1 / 2)))
274265, 266, 269, 270, 273lttrd 10795 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < (𝑁 + (1 / 2)))
275274gt0ne0d 11198 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 + (1 / 2)) ≠ 0)
27641, 275jca 512 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
277276ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
278 mulcan 11271 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
279262, 264, 277, 278syl3anc 1365 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
280261, 279mpbid 233 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 = 𝑌)
281 oveq1 7157 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → (𝑤 mod (2 · π)) = (𝑌 mod (2 · π)))
282 dirkercncflem2.ymod . . . . . . . . . . . . . 14 (𝜑 → (𝑌 mod (2 · π)) = 0)
283281, 282sylan9eqr 2883 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝑌) → (𝑤 mod (2 · π)) = 0)
284260, 280, 283syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (𝑤 mod (2 · π)) = 0)
285259, 284mtand 812 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
28641, 263mulcld 10655 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
287286adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
288 elsn2g 4600 . . . . . . . . . . . 12 (((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
289287, 288syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
290285, 289mtbird 326 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)})
291223, 290eldifd 3951 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
292224, 291eqeltrd 2918 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
293 sinf 15472 . . . . . . . . . . . 12 sin:ℂ⟶ℂ
294293fdmi 6523 . . . . . . . . . . 11 dom sin = ℂ
295294eqcomi 2835 . . . . . . . . . 10 ℂ = dom sin
296295a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ℂ = dom sin)
297296difeq1d 4102 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}) = (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
298292, 297eleqtrd 2920 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
299298ralrimiva 3187 . . . . . 6 (𝜑 → ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
300 fnfvrnss 6882 . . . . . 6 (((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)})) → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
301210, 299, 300syl2anc 584 . . . . 5 (𝜑 → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
302 uncom 4133 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
303302a1i 11 . . . . . . . . 9 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})))
30427snssd 4741 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
305 undif 4433 . . . . . . . . . 10 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
306304, 305sylib 219 . . . . . . . . 9 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
307303, 306eqtrd 2861 . . . . . . . 8 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
308307mpteq1d 5152 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
309 iftrue 4476 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑌))
310 oveq2 7158 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
311309, 310eqtr4d 2864 . . . . . . . . . . . 12 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
312311adantl 482 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
313 iffalse 4479 . . . . . . . . . . . . 13 𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
314313adantl 482 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
315 eqidd 2827 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
316 oveq2 7158 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
317316adantl 482 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
318 simpl 483 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ (𝐴(,)𝐵))
319 id 22 . . . . . . . . . . . . . . . . 17 𝑤 = 𝑌 → ¬ 𝑤 = 𝑌)
320 velsn 4580 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑌} ↔ 𝑤 = 𝑌)
321319, 320sylnibr 330 . . . . . . . . . . . . . . . 16 𝑤 = 𝑌 → ¬ 𝑤 ∈ {𝑌})
322321adantl 482 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → ¬ 𝑤 ∈ {𝑌})
323318, 322eldifd 3951 . . . . . . . . . . . . . 14 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
324323adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
32541adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℂ)
326 elioore 12763 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℝ)
327326recnd 10663 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℂ)
328327adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ ℂ)
329325, 328mulcld 10655 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
330329adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
331315, 317, 324, 330fvmptd 6773 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
332314, 331eqtrd 2861 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
333312, 332pm2.61dan 809 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
334333mpteq2dva 5158 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
335 ioosscn 41653 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
336 resmpt 5904 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
337335, 336ax-mp 5 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤))
338 eqid 2826 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤))
339338mulc1cncf 23447 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34041, 339syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34151cnfldtop 23326 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ Top
342 unicntop 23328 . . . . . . . . . . . . . . . . . . . 20 ℂ = (TopOpen‘ℂfld)
343342restid 16702 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
344341, 343ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
345344eqcomi 2835 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
34651, 345, 345cncfcn 23451 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
34774, 75, 346sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
348340, 347eleqtrd 2920 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3492, 37sstrid 3982 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
350342cnrest 21828 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
351348, 349, 350syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
352337, 351eqeltrrid 2923 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
35351cnfldtopon 23325 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
354 resttopon 21704 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
355353, 349, 354sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
356 cncnp 21823 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
357355, 353, 356sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
358352, 357mpbid 233 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
359358simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
360 fveq2 6669 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
361360eleq2d 2903 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
362361rspccva 3626 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
363359, 27, 362syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
364334, 363eqeltrd 2918 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
365307eqcomd 2832 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
366365oveq2d 7166 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
367366oveq1d 7165 . . . . . . . . 9 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)))
368367fveq1d 6671 . . . . . . . 8 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
369364, 368eleqtrd 2920 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
370308, 369eqeltrd 2918 . . . . . 6 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
371 eqid 2826 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
372 eqid 2826 . . . . . . 7 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
373206, 208fmptd 6876 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
3744, 36sstrdi 3983 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℂ)
375371, 51, 372, 373, 374, 263ellimc 24405 . . . . . 6 (𝜑 → (((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
376370, 375mpbird 258 . . . . 5 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌))
377134a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
378238a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
379154, 155, 377, 378mulne0d 11286 . . . . . . . . . . 11 (𝜑 → (2 · π) ≠ 0)
380263, 156, 379divcan1d 11411 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
381380eqcomd 2832 . . . . . . . . 9 (𝜑𝑌 = ((𝑌 / (2 · π)) · (2 · π)))
382381oveq2d 7166 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))))
383382fveq2d 6673 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))))
384263, 156, 379divcld 11410 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
38541, 384, 156mul12d 10843 . . . . . . . . . 10 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))))
38641, 154, 155mulassd 10658 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = ((𝑁 + (1 / 2)) · (2 · π)))
387386eqcomd 2832 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · (2 · π)) = (((𝑁 + (1 / 2)) · 2) · π))
388387oveq2d 7166 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)))
38938, 40, 154adddird 10660 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + ((1 / 2) · 2)))
390154, 377recid2d 11406 . . . . . . . . . . . . . 14 (𝜑 → ((1 / 2) · 2) = 1)
391390oveq2d 7166 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 · 2) + ((1 / 2) · 2)) = ((𝑁 · 2) + 1))
392389, 391eqtrd 2861 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + 1))
393392oveq1d 7165 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = (((𝑁 · 2) + 1) · π))
394393oveq2d 7166 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
395385, 388, 3943eqtrd 2865 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
39638, 154mulcld 10655 . . . . . . . . . . 11 (𝜑 → (𝑁 · 2) ∈ ℂ)
397 1cnd 10630 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
398396, 397addcld 10654 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) + 1) ∈ ℂ)
399384, 398, 155mulassd 10658 . . . . . . . . 9 (𝜑 → (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
400395, 399eqtr4d 2864 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π))
401400fveq2d 6673 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))) = (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)))
402 mod0 13239 . . . . . . . . . . 11 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
40357, 253, 402sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
404282, 403mpbid 233 . . . . . . . . 9 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
4055nnzd 12080 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
406 2z 12008 . . . . . . . . . . . 12 2 ∈ ℤ
407406a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℤ)
408405, 407zmulcld 12087 . . . . . . . . . 10 (𝜑 → (𝑁 · 2) ∈ ℤ)
409408peano2zd 12084 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) + 1) ∈ ℤ)
410404, 409zmulcld 12087 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ)
411 sinkpi 25041 . . . . . . . 8 (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
412410, 411syl 17 . . . . . . 7 (𝜑 → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
413383, 401, 4123eqtrd 2865 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = 0)
414 sincn 24966 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
415414a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
416415, 286cnlimci 24421 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
417413, 416eqeltrrd 2919 . . . . 5 (𝜑 → 0 ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
418301, 376, 417limccog 41785 . . . 4 (𝜑 → 0 ∈ ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌))
41914a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
420213fveq2d 6673 . . . . . . . . 9 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
421223sincld 15478 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
422419, 420, 214, 421fvmptd 6773 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
423224fveq2d 6673 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
424422, 423eqtr4d 2864 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
425424mpteq2dva 5158 . . . . . 6 (𝜑 → (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
42615feqmptd 6732 . . . . . 6 (𝜑𝐹 = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)))
427 fcompt 6893 . . . . . . 7 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ) → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
428293, 373, 427sylancr 587 . . . . . 6 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
429425, 426, 4283eqtr4rd 2872 . . . . 5 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = 𝐹)
430429oveq1d 7165 . . . 4 (𝜑 → ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌) = (𝐹 lim 𝑌))
431418, 430eleqtrd 2920 . . 3 (𝜑 → 0 ∈ (𝐹 lim 𝑌))
432 simpr 485 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 𝑤 = 𝑌)
433432iftrued 4478 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = 0)
434263, 154, 156, 377, 379divdiv32d 11435 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / 2) / (2 · π)) = ((𝑌 / (2 · π)) / 2))
435434oveq1d 7165 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (((𝑌 / (2 · π)) / 2) · (2 · π)))
436263halfcld 11876 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 / 2) ∈ ℂ)
437436, 156, 379divcan1d 11411 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (𝑌 / 2))
438384, 154, 156, 377div32d 11433 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · ((2 · π) / 2)))
439155, 154, 377divcan3d 11415 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · π) / 2) = π)
440439oveq2d 7166 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / (2 · π)) · ((2 · π) / 2)) = ((𝑌 / (2 · π)) · π))
441438, 440eqtrd 2861 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · π))
442435, 437, 4413eqtr3d 2869 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 / 2) = ((𝑌 / (2 · π)) · π))
443442fveq2d 6673 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑌 / 2)) = (sin‘((𝑌 / (2 · π)) · π)))
444 sinkpi 25041 . . . . . . . . . . . . . . 15 ((𝑌 / (2 · π)) ∈ ℤ → (sin‘((𝑌 / (2 · π)) · π)) = 0)
445404, 444syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((𝑌 / (2 · π)) · π)) = 0)
446443, 445eqtrd 2861 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑌 / 2)) = 0)
447446oveq2d 7166 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · 0))
448156mul01d 10833 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · 0) = 0)
449447, 448eqtrd 2861 . . . . . . . . . . 11 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = 0)
450449eqcomd 2832 . . . . . . . . . 10 (𝜑 → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
451450ad2antrr 722 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
452 fvoveq1 7173 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (sin‘(𝑤 / 2)) = (sin‘(𝑌 / 2)))
453452oveq2d 7166 . . . . . . . . . . 11 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑌 / 2))))
454453eqcomd 2832 . . . . . . . . . 10 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
455454adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
456433, 451, 4553eqtrd 2865 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
457 iffalse 4479 . . . . . . . . . 10 𝑤 = 𝑌 → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
458457adantl 482 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
459 fvoveq1 7173 . . . . . . . . . . 11 (𝑦 = 𝑤 → (sin‘(𝑦 / 2)) = (sin‘(𝑤 / 2)))
460459oveq2d 7166 . . . . . . . . . 10 (𝑦 = 𝑤 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
461120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (2 · π) ∈ ℂ)
462328halfcld 11876 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) ∈ ℂ)
463462sincld 15478 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (sin‘(𝑤 / 2)) ∈ ℂ)
464461, 463mulcld 10655 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
465464adantr 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
46623, 460, 324, 465fvmptd3 6789 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐺𝑤) = ((2 · π) · (sin‘(𝑤 / 2))))
467458, 466eqtrd 2861 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
468456, 467pm2.61dan 809 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
469468mpteq2dva 5158 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))))
470 eqid 2826 . . . . . . . . . . 11 (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2))))
47175, 156, 75constcncfg 42038 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (2 · π)) ∈ (ℂ–cn→ℂ))
472 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
473 2cnd 11709 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ∈ ℂ)
474134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ≠ 0)
475472, 473, 474divrec2d 11414 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 / 2) = ((1 / 2) · 𝑤))
476475mpteq2ia 5154 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
477 eqid 2826 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
478477mulc1cncf 23447 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ))
47939, 478ax-mp 5 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ)
480476, 479eqeltri 2914 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ)
481480a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ))
482415, 481cncfmpt1f 23455 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (sin‘(𝑤 / 2))) ∈ (ℂ–cn→ℂ))
483471, 482mulcncf 23981 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (ℂ–cn→ℂ))
484470, 483, 349, 75, 464cncfmptssg 42037 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
485 eqid 2826 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
48651, 485, 345cncfcn 23451 . . . . . . . . . . 11 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
487349, 74, 486sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
488484, 487eleqtrd 2920 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
489 cncnp 21823 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
490355, 353, 489sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
491488, 490mpbid 233 . . . . . . . 8 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
492491simprd 496 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
493360eleq2d 2903 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
494493rspccva 3626 . . . . . . 7 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
495492, 27, 494syl2anc 584 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
496469, 495eqeltrd 2918 . . . . 5 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
497307mpteq1d 5152 . . . . 5 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))))
498366eqcomd 2832 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
499498oveq1d 7165 . . . . . 6 (𝜑 → (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
500499fveq1d 6671 . . . . 5 (𝜑 → ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
501496, 497, 5003eltr4d 2933 . . . 4 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
502 eqid 2826 . . . . 5 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤)))
50311, 124syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
504503, 23fmptd 6876 . . . . 5 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
505371, 51, 502, 504, 374, 263ellimc 24405 . . . 4 (𝜑 → (0 ∈ (𝐺 lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
506501, 505mpbird 258 . . 3 (𝜑 → 0 ∈ (𝐺 lim 𝑌))
507256nrexdv 3275 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
508504ffund 6517 . . . . . 6 (𝜑 → Fun 𝐺)
509 fvelima 6730 . . . . . 6 ((Fun 𝐺 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
510508, 509sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
511 2cnd 11709 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
512119a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
513134a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
514238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
515105, 511, 512, 513, 514divdiv1d 11441 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
516515eqcomd 2832 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
517516adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
518 2cnd 11709 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 2 ∈ ℂ)
519119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → π ∈ ℂ)
520518, 519mulcld 10655 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (2 · π) ∈ ℂ)
521232adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
522521halfcld 11876 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
523522sincld 15478 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) ∈ ℂ)
524520, 523mulcld 10655 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
52523fvmpt2 6777 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
526524, 525syldan 591 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
527526eqcomd 2832 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = (𝐺𝑦))
528 simpr 485 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = 0)
529527, 528eqtrd 2861 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = 0)
530120a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (2 · π) ∈ ℂ)
531232halfcld 11876 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / 2) ∈ ℂ)
532531sincld 15478 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (sin‘(𝑦 / 2)) ∈ ℂ)
533530, 532mul0ord 11284 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
534533adantr 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
535529, 534mpbid 233 . . . . . . . . . . . . 13 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0))
536 2cnne0 11841 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
537119, 238pm3.2i 471 . . . . . . . . . . . . . . 15 (π ∈ ℂ ∧ π ≠ 0)
538 mulne0 11276 . . . . . . . . . . . . . . 15 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (2 · π) ≠ 0)
539536, 537, 538mp2an 688 . . . . . . . . . . . . . 14 (2 · π) ≠ 0
540539neii 3023 . . . . . . . . . . . . 13 ¬ (2 · π) = 0
541 pm2.53 847 . . . . . . . . . . . . 13 (((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0) → (¬ (2 · π) = 0 → (sin‘(𝑦 / 2)) = 0))
542535, 540, 541mpisyl 21 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
543542adantll 710 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
544105adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
545544halfcld 11876 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
546545, 246syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
547543, 546mpbid 233 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 / 2) / π) ∈ ℤ)
548517, 547eqeltrd 2918 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) ∈ ℤ)
54911adantr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℝ)
550549, 253, 254sylancl 586 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
551548, 550mpbird 258 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 mod (2 · π)) = 0)
552551ex 413 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐺𝑦) = 0 → (𝑦 mod (2 · π)) = 0))
553552reximdva 3279 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
554553adantr 481 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
555510, 554mpd 15 . . . 4 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
556507, 555mtand 812 . . 3 (𝜑 → ¬ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌})))
557 simpr 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
558111fvmpt2 6777 . . . . . . . . 9 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (π · (cos‘(𝑦 / 2))) ∈ ℂ) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
559557, 201, 558syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
560531coscld 15479 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (cos‘(𝑦 / 2)) ∈ ℂ)
561560adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ∈ ℂ)
562 dirkercncflem2.11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
563512, 561, 514, 562mulne0d 11286 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ≠ 0)
564559, 563eqnetrd 3088 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) ≠ 0)
565564neneqd 3026 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝐼𝑦) = 0)
566565nrexdv 3275 . . . . 5 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
567201, 111fmptd 6876 . . . . . . 7 (𝜑𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
568567ffund 6517 . . . . . 6 (𝜑 → Fun 𝐼)
569 fvelima 6730 . . . . . 6 ((Fun 𝐼 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
570568, 569sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
571566, 570mtand 812 . . . 4 (𝜑 → ¬ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
572199imaeq1d 5927 . . . 4 (𝜑 → ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
573571, 572neleqtrrd 2940 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})))
574 dirkercncflem2.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
575574dirkerval2 42264 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ ℝ) → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
5765, 57, 575syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
577282iftrued 4478 . . . . 5 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
578 dirkercncflem2.l . . . . . . . . . . 11 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
579578a1i 11 . . . . . . . . . 10 (𝜑𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))))
580 iftrue 4476 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
581580adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
582154, 38mulcld 10655 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · 𝑁) ∈ ℂ)
583582, 397addcld 10654 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
584583, 154, 155, 377, 378divdiv1d 11441 . . . . . . . . . . . . . . . 16 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
585584eqcomd 2832 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
586582, 397, 154, 377divdird 11448 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
58738, 154, 377divcan3d 11415 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
588587oveq1d 7165 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
589586, 588eqtrd 2861 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
590589oveq1d 7165 . . . . . . . . . . . . . . 15 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = ((𝑁 + (1 / 2)) / π))
591585, 590eqtrd 2861 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
592591ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
593310fveq2d 6673 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑌)))
594593oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))))
595 fvoveq1 7173 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
596595oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑌 / 2))))
597594, 596oveq12d 7168 . . . . . . . . . . . . . . 15 (𝑤 = 𝑌 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
598597adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
59938, 40, 263adddird 10660 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)))
600397, 154, 263, 377div32d 11433 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 / 2) · 𝑌) = (1 · (𝑌 / 2)))
601436mulid2d 10653 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · (𝑌 / 2)) = (𝑌 / 2))
602600, 601eqtrd 2861 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 / 2) · 𝑌) = (𝑌 / 2))
603602oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)) = ((𝑁 · 𝑌) + (𝑌 / 2)))
60438, 263mulcld 10655 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑌) ∈ ℂ)
605604, 436addcomd 10836 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + (𝑌 / 2)) = ((𝑌 / 2) + (𝑁 · 𝑌)))
606599, 603, 6053eqtrd 2865 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑌 / 2) + (𝑁 · 𝑌)))
607606fveq2d 6673 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘((𝑌 / 2) + (𝑁 · 𝑌))))
608604, 156, 379divcan1d 11411 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑁 · 𝑌) / (2 · π)) · (2 · π)) = (𝑁 · 𝑌))
609608eqcomd 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · 𝑌) = (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))
610609oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) + (𝑁 · 𝑌)) = ((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π))))
611610fveq2d 6673 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (𝑁 · 𝑌))) = (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))))
61238, 263, 156, 379divassd 11445 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) = (𝑁 · (𝑌 / (2 · π))))
613405, 404zmulcld 12087 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · (𝑌 / (2 · π))) ∈ ℤ)
614612, 613eqeltrd 2918 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ)
615 cosper 25002 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 / 2) ∈ ℂ ∧ ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ) → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
616436, 614, 615syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
617607, 611, 6163eqtrd 2865 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘(𝑌 / 2)))
618617oveq2d 7166 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) = ((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))))
619618oveq1d 7165 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))))
620436coscld 15479 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ∈ ℂ)
621263, 154, 155, 377, 378divdiv1d 11441 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) = (𝑌 / (2 · π)))
622621, 404eqeltrd 2918 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) ∈ ℤ)
623622zred 12081 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) ∈ ℝ)
624623, 272ltaddrpd 12459 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)))
625 halflt1 11849 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) < 1
626625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 / 2) < 1)
627268, 267, 623, 626ltadd2dd 10793 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1))
628 btwnnz 12052 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌 / 2) / π) ∈ ℤ ∧ ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)) ∧ (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1)) → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
629622, 624, 627, 628syl3anc 1365 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
630 coseq0 42029 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 / 2) ∈ ℂ → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
631436, 630syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
632629, 631mtbird 326 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (cos‘(𝑌 / 2)) = 0)
633632neqned 3028 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ≠ 0)
63441, 155, 620, 378, 633divcan5rd 11437 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
635619, 634eqtrd 2861 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
636635ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
637598, 636eqtr2d 2862 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) / π) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
638581, 592, 6373eqtrrd 2866 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
639 iffalse 4479 . . . . . . . . . . . . . 14 𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
640639adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
641 eqidd 2827 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))))
642 fveq2 6669 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐻𝑦) = (𝐻𝑤))
643 fveq2 6669 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐼𝑦) = (𝐼𝑤))
644642, 643oveq12d 7168 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
645644adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
646106, 100fmptd 6876 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
647646ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
648647, 324ffvelrnd 6850 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) ∈ ℂ)
649567ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
650649, 324ffvelrnd 6850 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ∈ ℂ)
651111a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
652 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
653652fvoveq1d 7172 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
654653oveq2d 7166 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (π · (cos‘(𝑦 / 2))) = (π · (cos‘(𝑤 / 2))))
655119a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → π ∈ ℂ)
656327halfcld 11876 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴(,)𝐵) → (𝑤 / 2) ∈ ℂ)
657656coscld 15479 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → (cos‘(𝑤 / 2)) ∈ ℂ)
658655, 657mulcld 10655 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴(,)𝐵) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
659658ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
660651, 654, 324, 659fvmptd 6773 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) = (π · (cos‘(𝑤 / 2))))
661537a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π ∈ ℂ ∧ π ≠ 0))
662657ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ∈ ℂ)
663 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝜑)
664 fvoveq1 7173 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
665664neeq1d 3080 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → ((cos‘(𝑦 / 2)) ≠ 0 ↔ (cos‘(𝑤 / 2)) ≠ 0))
666226, 665imbi12d 346 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)))
667666, 562chvarv 2410 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)
668663, 324, 667syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
669 mulne0 11276 . . . . . . . . . . . . . . . . 17 (((π ∈ ℂ ∧ π ≠ 0) ∧ ((cos‘(𝑤 / 2)) ∈ ℂ ∧ (cos‘(𝑤 / 2)) ≠ 0)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
670661, 662, 668, 669syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ≠ 0)
671660, 670eqnetrd 3088 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ≠ 0)
672648, 650, 671divcld 11410 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) ∈ ℂ)
673641, 645, 324, 672fvmptd 6773 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤) = ((𝐻𝑤) / (𝐼𝑤)))
674100a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
675317fveq2d 6673 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
676675oveq2d 7166 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
677329coscld 15479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
678325, 677mulcld 10655 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
679678adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
680674, 676, 324, 679fvmptd 6773 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
681680, 660oveq12d 7168 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
682640, 673, 6813eqtrrd 2866 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
683638, 682pm2.61dan 809 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
684683mpteq2dva 5158 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
685579, 684eqtr2d 2862 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = 𝐿)
686349, 41, 75constcncfg 42038 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
687 cosf 15473 . . . . . . . . . . . . . . . . . . 19 cos:ℂ⟶ℂ
688231, 44sylan2 592 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
689 eqid 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))
690688, 689fmptd 6876 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ)
691 fcompt 6893 . . . . . . . . . . . . . . . . . . 19 ((cos:ℂ⟶ℂ ∧ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ) → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
692687, 690, 691sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
693 eqidd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
694316adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
695 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ (𝐴(,)𝐵))
696693, 694, 695, 329fvmptd 6773 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
697696fveq2d 6673 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
698697mpteq2dva 5158 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))))
699692, 698eqtr2d 2862 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) = (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))))
700349, 41, 75constcncfg 42038 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
701349, 75idcncfg 42039 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝑦) ∈ ((𝐴(,)𝐵)–cn→ℂ))
702700, 701mulcncf 23981 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
703 coscn 24967 . . . . . . . . . . . . . . . . . . 19 cos ∈ (ℂ–cn→ℂ)
704703a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → cos ∈ (ℂ–cn→ℂ))
705702, 704cncfco 23449 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
706699, 705eqeltrd 2918 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
707686, 706mulcncf 23981 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
708 eqid 2826 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2))))
709349, 155, 75constcncfg 42038 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→ℂ))
710 2cnd 11709 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
711134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
712328, 710, 711divrecd 11413 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) = (𝑤 · (1 / 2)))
713712mpteq2dva 5158 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))))
714 eqid 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) = (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2)))
715 cncfmptid 23454 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71674, 74, 715mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ)
717716a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71874a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
719 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
720718, 719, 718constcncfg 42038 . . . . . . . . . . . . . . . . . . . . . 22 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
72139, 720mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
722717, 721mulcncf 23981 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) ∈ (ℂ–cn→ℂ))
723712, 462eqeltrrd 2919 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 · (1 / 2)) ∈ ℂ)
724714, 722, 349, 75, 723cncfmptssg 42037 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
725713, 724eqeltrd 2918 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
726704, 725cncfmpt1f 23455 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑤 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
727709, 726mulcncf 23981 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
728 ssid 3993 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
729728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
730 difssd 4113 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
731658adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
732119a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ∈ ℂ)
733657adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ∈ ℂ)
734238a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ≠ 0)
735595adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
736633adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑌 / 2)) ≠ 0)
737735, 736eqnetrd 3088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
738737adantlr 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
739738, 668pm2.61dan 809 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ≠ 0)
740732, 733, 734, 739mulne0d 11286 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
741740neneqd 3026 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) = 0)
742 elsng 4578 . . . . . . . . . . . . . . . . . . 19 ((π · (cos‘(𝑤 / 2))) ∈ ℂ → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
743731, 742syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
744741, 743mtbird 326 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) ∈ {0})
745731, 744eldifd 3951 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ (ℂ ∖ {0}))
746708, 727, 729, 730, 745cncfmptssg 42037 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
747707, 746divcncf 23982 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
748747, 487eleqtrd 2920 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
749579, 748eqeltrd 2918 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
750 cncnp 21823 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
751355, 353, 750sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
752749, 751mpbid 233 . . . . . . . . . . 11 (𝜑 → (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
753752simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
754360eleq2d 2903 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
755754rspccva 3626 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
756753, 27, 755syl2anc 584 . . . . . . . . 9 (𝜑𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
757685, 756eqeltrd 2918 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
758307mpteq1d 5152 . . . . . . . 8 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
759757, 758, 5003eltr4d 2933 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
760 eqid 2826 . . . . . . . 8 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
761100fvmpt2 6777 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
762557, 106, 761syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
763762, 559oveq12d 7168 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))))
764106, 201, 563divcld 11410 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))) ∈ ℂ)
765763, 764eqeltrd 2918 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) ∈ ℂ)
766 eqid 2826 . . . . . . . . 9 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))
767765, 766fmptd 6876 . . . . . . . 8 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
768371, 51, 760, 767, 374, 263ellimc 24405 . . . . . . 7 (𝜑 → ((((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
769759, 768mpbird 258 . . . . . 6 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌))
770103eqcomd 2832 . . . . . . . . . 10 (𝜑𝐻 = (ℝ D 𝐹))
771770fveq1d 6671 . . . . . . . . 9 (𝜑 → (𝐻𝑦) = ((ℝ D 𝐹)‘𝑦))
772199eqcomd 2832 . . . . . . . . . 10 (𝜑𝐼 = (ℝ D 𝐺))
773772fveq1d 6671 . . . . . . . . 9 (𝜑 → (𝐼𝑦) = ((ℝ D 𝐺)‘𝑦))
774771, 773oveq12d 7168 . . . . . . . 8 (𝜑 → ((𝐻𝑦) / (𝐼𝑦)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
775774mpteq2dv 5159 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))))
776775oveq1d 7165 . . . . . 6 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
777769, 776eleqtrd 2920 . . . . 5 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
778577, 777eqeltrd 2918 . . . 4 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
779576, 778eqeltrd 2918 . . 3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
7804, 15, 24, 26, 27, 28, 110, 205, 431, 506, 556, 573, 779lhop 24547 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌))
781574dirkerval 42261 . . . . . 6 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
7825, 781syl 17 . . . . 5 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
783782reseq1d 5851 . . . 4 (𝜑 → ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
7844resmptd 5907 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
785256iffalsed 4481 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
78613recnd 10663 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
78714fvmpt2 6777 . . . . . . . 8 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
788557, 786, 787syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
789557, 503, 525syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
790788, 789oveq12d 7168 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐹𝑦) / (𝐺𝑦)) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
791785, 790eqtr4d 2864 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((𝐹𝑦) / (𝐺𝑦)))
792791mpteq2dva 5158 . . . 4 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))))
793783, 784, 7923eqtrrd 2866 . . 3 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) = ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
794793oveq1d 7165 . 2 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌) = (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
795780, 794eleqtrd 2920 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 843   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  ∃wrex 3144   ∖ cdif 3937   ∪ cun 3938   ⊆ wss 3940  ifcif 4470  {csn 4564  {cpr 4566   class class class wbr 5063   ↦ cmpt 5143  dom cdm 5554  ran crn 5555   ↾ cres 5556   “ cima 5557   ∘ ccom 5558  Fun wfun 6348   Fn wfn 6349  ⟶wf 6350  ‘cfv 6354  (class class class)co 7150  ℂcc 10529  ℝcr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669   / cdiv 11291  ℕcn 11632  2c2 11686  ℤcz 11975  ℝ+crp 12384  (,)cioo 12733   mod cmo 13232  sincsin 15412  cosccos 15413  πcpi 15415   ↾t crest 16689  TopOpenctopn 16690  topGenctg 16706  ℂfldccnfld 20480  Topctop 21436  TopOnctopon 21453  Clsdccld 21559  intcnt 21560   Cn ccn 21767   CnP ccnp 21768  Hauscha 21851  –cn→ccncf 23418   limℂ climc 24394   D cdv 24395 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-t1 21857  df-haus 21858  df-cmp 21930  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399 This theorem is referenced by:  dirkercncflem3  42275
 Copyright terms: Public domain W3C validator