Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem2 Structured version   Visualization version   GIF version

Theorem dirkercncflem2 46226
Description: Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem2.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem2.f 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
dirkercncflem2.g 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem2.yne0 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
dirkercncflem2.h 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
dirkercncflem2.i 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
dirkercncflem2.l 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
dirkercncflem2.n (𝜑𝑁 ∈ ℕ)
dirkercncflem2.y (𝜑𝑌 ∈ (𝐴(,)𝐵))
dirkercncflem2.ymod (𝜑 → (𝑌 mod (2 · π)) = 0)
dirkercncflem2.11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
Assertion
Ref Expression
dirkercncflem2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Distinct variable groups:   𝑤,𝐴,𝑦   𝑤,𝐵,𝑦   𝑦,𝐷   𝑤,𝐹,𝑦   𝑤,𝐺,𝑦   𝑤,𝐻,𝑦   𝑤,𝐼,𝑦   𝑦,𝐿   𝑤,𝑁,𝑦   𝑤,𝑌,𝑦   𝑦,𝑛   𝜑,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑤,𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐿(𝑤,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem2
StepHypRef Expression
1 difss 4085 . . . . 5 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ (𝐴(,)𝐵)
2 ioossre 13309 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
31, 2sstri 3940 . . . 4 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ
43a1i 11 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5 dirkercncflem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℕ)
76nnred 12147 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℝ)
8 halfre 12341 . . . . . . . 8 (1 / 2) ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
107, 9readdcld 11148 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℝ)
114sselda 3930 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
1210, 11remulcld 11149 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℝ)
1312resincld 16054 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℝ)
14 dirkercncflem2.f . . . 4 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
1513, 14fmptd 7053 . . 3 (𝜑𝐹:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
16 2re 12206 . . . . . . 7 2 ∈ ℝ
17 pire 26394 . . . . . . 7 π ∈ ℝ
1816, 17remulcli 11135 . . . . . 6 (2 · π) ∈ ℝ
1918a1i 11 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
2011rehalfcld 12375 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℝ)
2120resincld 16054 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ∈ ℝ)
2219, 21remulcld 11149 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
23 dirkercncflem2.g . . . 4 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
2422, 23fmptd 7053 . . 3 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
25 iooretop 24681 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
2625a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
27 dirkercncflem2.y . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
28 eqid 2733 . . 3 ((𝐴(,)𝐵) ∖ {𝑌}) = ((𝐴(,)𝐵) ∖ {𝑌})
2914a1i 11 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
3029oveq2d 7368 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
31 resmpt 5990 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
323, 31ax-mp 5 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
3332eqcomi 2742 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
3534oveq2d 7368 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
36 ax-resscn 11070 . . . . . . . . . 10 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
385nncnd 12148 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
39 halfcn 12342 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℂ
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 2) ∈ ℂ)
4138, 40addcld 11138 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
4337sselda 3930 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43mulcld 11139 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
4544sincld 16041 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
46 eqid 2733 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
4745, 46fmptd 7053 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ)
48 ssid 3953 . . . . . . . . . . 11 ℝ ⊆ ℝ
4948, 3pm3.2i 470 . . . . . . . . . 10 (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ))
51 eqid 2733 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
52 tgioo4 24721 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52dvres 25840 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
5437, 47, 50, 53syl21anc 837 . . . . . . . 8 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
55 retop 24677 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
56 rehaus 24715 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Haus
5727elioored 45673 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
58 uniretop 24678 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
5958sncld 23287 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Haus ∧ 𝑌 ∈ ℝ) → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6056, 57, 59sylancr 587 . . . . . . . . . . . 12 (𝜑 → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6158difopn 22950 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ {𝑌} ∈ (Clsd‘(topGen‘ran (,)))) → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
6225, 60, 61sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
63 isopn3i 22998 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6455, 62, 63sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6564reseq2d 5932 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
66 reelprrecn 11105 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
6841adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 + (1 / 2)) ∈ ℂ)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7068, 69mulcld 11139 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
7170sincld 16041 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
72 eqid 2733 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
7371, 72fmptd 7053 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ)
74 ssid 3953 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
7574a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
76 dvsinax 46035 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7741, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7877dmeqd 5849 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
79 eqid 2733 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
8070coscld 16042 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
8168, 80mulcld 11139 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
8279, 81dmmptd 6631 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8378, 82eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8436, 83sseqtrrid 3974 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
85 dvres3 25842 . . . . . . . . . . . 12 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
8667, 73, 75, 84, 85syl22anc 838 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
87 resmpt 5990 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8836, 87mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8988oveq2d 7368 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
9077reseq1d 5931 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
91 resmpt 5990 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9236, 91ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
9390, 92eqtrdi 2784 . . . . . . . . . . 11 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9486, 89, 933eqtr3d 2776 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9594reseq1d 5931 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
96 resmpt 5990 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
973, 96mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9865, 95, 973eqtrd 2772 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9935, 54, 983eqtrd 2772 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
100 dirkercncflem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
101100a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
102101eqcomd 2739 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = 𝐻)
10330, 99, 1023eqtrd 2772 . . . . . 6 (𝜑 → (ℝ D 𝐹) = 𝐻)
104103dmeqd 5849 . . . . 5 (𝜑 → dom (ℝ D 𝐹) = dom 𝐻)
10511recnd 11147 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
106105, 81syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
107100, 106dmmptd 6631 . . . . 5 (𝜑 → dom 𝐻 = ((𝐴(,)𝐵) ∖ {𝑌}))
108104, 107eqtr2d 2769 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹))
109 eqimss 3989 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
110108, 109syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
111 dirkercncflem2.i . . . . . . . 8 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
112111a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
113 resmpt 5990 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
1143, 113ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
115114eqcomi 2742 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
116115oveq2i 7363 . . . . . . . . . 10 (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
117116a1i 11 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
118 2cn 12207 . . . . . . . . . . . . . 14 2 ∈ ℂ
119 picn 26395 . . . . . . . . . . . . . 14 π ∈ ℂ
120118, 119mulcli 11126 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
121120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (2 · π) ∈ ℂ)
12243halfcld 12373 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 2) ∈ ℂ)
123122sincld 16041 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝑦 / 2)) ∈ ℂ)
124121, 123mulcld 11139 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
125 eqid 2733 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))
126124, 125fmptd 7053 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ)
12751, 52dvres 25840 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12837, 126, 50, 127syl21anc 837 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12964reseq2d 5932 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
13036sseli 3926 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
131 1cnd 11114 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 1 ∈ ℂ)
132 2cnd 12210 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ∈ ℂ)
133 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
134 2ne0 12236 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
135134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ≠ 0)
136131, 132, 133, 135div13d 11928 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = ((𝑦 / 2) · 1))
137 halfcl 12354 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (𝑦 / 2) ∈ ℂ)
138137mulridd 11136 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 / 2) · 1) = (𝑦 / 2))
139136, 138eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = (𝑦 / 2))
140139fveq2d 6832 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (sin‘((1 / 2) · 𝑦)) = (sin‘(𝑦 / 2)))
141140oveq2d 7368 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((2 · π) · (sin‘((1 / 2) · 𝑦))) = ((2 · π) · (sin‘(𝑦 / 2))))
142141eqcomd 2739 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
143130, 142syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
144143adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
145144mpteq2dva 5186 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
146145oveq2d 7368 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
147120a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (2 · π) ∈ ℂ)
14839a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (1 / 2) ∈ ℂ)
149148, 69mulcld 11139 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → ((1 / 2) · 𝑦) ∈ ℂ)
150149sincld 16041 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (sin‘((1 / 2) · 𝑦)) ∈ ℂ)
151147, 150mulcld 11139 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (sin‘((1 / 2) · 𝑦))) ∈ ℂ)
152 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))
153151, 152fmptd 7053 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ)
154 2cnd 12210 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℂ)
155119a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → π ∈ ℂ)
156154, 155mulcld 11139 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · π) ∈ ℂ)
157 dvasinbx 46042 . . . . . . . . . . . . . . . . . . . 20 (((2 · π) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
158156, 39, 157sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
159 2cnd 12210 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → 2 ∈ ℂ)
160119a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → π ∈ ℂ)
161159, 160, 148mul32d 11330 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = ((2 · (1 / 2)) · π))
162134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℂ) → 2 ≠ 0)
163159, 162recidd 11899 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → (2 · (1 / 2)) = 1)
164163oveq1d 7367 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · (1 / 2)) · π) = (1 · π))
165160mullidd 11137 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → (1 · π) = π)
166161, 164, 1653eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = π)
167139fveq2d 6832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
168167adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
169166, 168oveq12d 7370 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦))) = (π · (cos‘(𝑦 / 2))))
170169mpteq2dva 5186 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
171158, 170eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
172171dmeqd 5849 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
173 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2))))
17469halfcld 12373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (𝑦 / 2) ∈ ℂ)
175174coscld 16042 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝑦 / 2)) ∈ ℂ)
176160, 175mulcld 11139 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
177173, 176dmmptd 6631 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = ℂ)
178172, 177eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ℂ)
17936, 178sseqtrrid 3974 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
180 dvres3 25842 . . . . . . . . . . . . . . 15 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))) → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
18167, 153, 75, 179, 180syl22anc 838 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
182 resmpt 5990 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
18336, 182mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
184183oveq2d 7368 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
185171reseq1d 5931 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
186181, 184, 1853eqtr3d 2776 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
187 resmpt 5990 . . . . . . . . . . . . . 14 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
18836, 187ax-mp 5 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2))))
189186, 188eqtrdi 2784 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
190146, 189eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
191190reseq1d 5931 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
1924resmptd 5993 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
193129, 191, 1923eqtrd 2772 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
194117, 128, 1933eqtrd 2772 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
195194eqcomd 2739 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
19623a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
197196oveq2d 7368 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
198197eqcomd 2739 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D 𝐺))
199112, 195, 1983eqtrrd 2773 . . . . . 6 (𝜑 → (ℝ D 𝐺) = 𝐼)
200199dmeqd 5849 . . . . 5 (𝜑 → dom (ℝ D 𝐺) = dom 𝐼)
201105, 176syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
202111, 201dmmptd 6631 . . . . 5 (𝜑 → dom 𝐼 = ((𝐴(,)𝐵) ∖ {𝑌}))
203200, 202eqtr2d 2769 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺))
204 eqimss 3989 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
205203, 204syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
206105, 70syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
207206ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
208 eqid 2733 . . . . . . . 8 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))
209208fnmpt 6626 . . . . . . 7 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
210207, 209syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
211 eqidd 2734 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
212 simpr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
213212oveq2d 7368 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
214 simpr 484 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
21538adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℂ)
216 1cnd 11114 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
217216halfcld 12373 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℂ)
218215, 217addcld 11138 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℂ)
219 eldifi 4080 . . . . . . . . . . . . . 14 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ (𝐴(,)𝐵))
220219elioored 45673 . . . . . . . . . . . . 13 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℝ)
221220recnd 11147 . . . . . . . . . . . 12 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℂ)
222221adantl 481 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ℂ)
223218, 222mulcld 11139 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
224211, 213, 214, 223fvmptd 6942 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
225 eleq1w 2816 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↔ 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})))
226225anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ↔ (𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))))
227 oveq1 7359 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 mod (2 · π)) = (𝑤 mod (2 · π)))
228227neeq1d 2988 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑦 mod (2 · π)) ≠ 0 ↔ (𝑤 mod (2 · π)) ≠ 0))
229226, 228imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)))
230 eldifi 4080 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
231 elioore 13277 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ)
232230, 231, 1303syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℂ)
233 2cnd 12210 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ∈ ℂ)
234119a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ∈ ℂ)
235134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ≠ 0)
236 0re 11121 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
237 pipos 26396 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
238236, 237gtneii 11232 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ≠ 0)
240232, 233, 234, 235, 239divdiv1d 11935 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
241240eqcomd 2739 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
242241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
243 dirkercncflem2.yne0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
244243neneqd 2934 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
245105halfcld 12373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
246 sineq0 26461 . . . . . . . . . . . . . . . . . . 19 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
247245, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
248244, 247mtbid 324 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
249242, 248eqneltrd 2853 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
250 2rp 12897 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
251 pirp 26398 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ+
252 rpmulcl 12917 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
253250, 251, 252mp2an 692 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℝ+
254 mod0 13782 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
25511, 253, 254sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
256249, 255mtbird 325 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 mod (2 · π)) = 0)
257256neqned 2936 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0)
258229, 257chvarvv 1990 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)
259258neneqd 2934 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑤 mod (2 · π)) = 0)
260 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝜑)
261 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
262221ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 ∈ ℂ)
26357recnd 11147 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
264263ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑌 ∈ ℂ)
265 0red 11122 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
2665nnred 12147 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
267 1red 11120 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
268267rehalfcld 12375 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ)
269266, 268readdcld 11148 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
2705nngt0d 12181 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑁)
271250a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℝ+)
272271rpreccld 12946 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ+)
273266, 272ltaddrpd 12969 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 < (𝑁 + (1 / 2)))
274265, 266, 269, 270, 273lttrd 11281 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < (𝑁 + (1 / 2)))
275274gt0ne0d 11688 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 + (1 / 2)) ≠ 0)
27641, 275jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
277276ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
278 mulcan 11761 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
279262, 264, 277, 278syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
280261, 279mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 = 𝑌)
281 oveq1 7359 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → (𝑤 mod (2 · π)) = (𝑌 mod (2 · π)))
282 dirkercncflem2.ymod . . . . . . . . . . . . . 14 (𝜑 → (𝑌 mod (2 · π)) = 0)
283281, 282sylan9eqr 2790 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝑌) → (𝑤 mod (2 · π)) = 0)
284260, 280, 283syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (𝑤 mod (2 · π)) = 0)
285259, 284mtand 815 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
28641, 263mulcld 11139 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
287286adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
288 elsn2g 4616 . . . . . . . . . . . 12 (((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
289287, 288syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
290285, 289mtbird 325 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)})
291223, 290eldifd 3909 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
292224, 291eqeltrd 2833 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
293 sinf 16035 . . . . . . . . . . . 12 sin:ℂ⟶ℂ
294293fdmi 6667 . . . . . . . . . . 11 dom sin = ℂ
295294eqcomi 2742 . . . . . . . . . 10 ℂ = dom sin
296295a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ℂ = dom sin)
297296difeq1d 4074 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}) = (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
298292, 297eleqtrd 2835 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
299298ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
300 fnfvrnss 7060 . . . . . 6 (((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)})) → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
301210, 299, 300syl2anc 584 . . . . 5 (𝜑 → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
302 uncom 4107 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
303302a1i 11 . . . . . . . . 9 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})))
30427snssd 4760 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
305 undif 4431 . . . . . . . . . 10 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
306304, 305sylib 218 . . . . . . . . 9 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
307303, 306eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
308307mpteq1d 5183 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
309 iftrue 4480 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑌))
310 oveq2 7360 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
311309, 310eqtr4d 2771 . . . . . . . . . . . 12 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
312311adantl 481 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
313 iffalse 4483 . . . . . . . . . . . . 13 𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
314313adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
315 eqidd 2734 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
316 oveq2 7360 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
317316adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
318 simpl 482 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ (𝐴(,)𝐵))
319 id 22 . . . . . . . . . . . . . . . . 17 𝑤 = 𝑌 → ¬ 𝑤 = 𝑌)
320 velsn 4591 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑌} ↔ 𝑤 = 𝑌)
321319, 320sylnibr 329 . . . . . . . . . . . . . . . 16 𝑤 = 𝑌 → ¬ 𝑤 ∈ {𝑌})
322321adantl 481 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → ¬ 𝑤 ∈ {𝑌})
323318, 322eldifd 3909 . . . . . . . . . . . . . 14 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
324323adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
32541adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℂ)
326 elioore 13277 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℝ)
327326recnd 11147 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℂ)
328327adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ ℂ)
329325, 328mulcld 11139 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
330329adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
331315, 317, 324, 330fvmptd 6942 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
332314, 331eqtrd 2768 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
333312, 332pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
334333mpteq2dva 5186 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
335 ioosscn 13310 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
336 resmpt 5990 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
337335, 336ax-mp 5 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤))
338 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤))
339338mulc1cncf 24826 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34041, 339syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34151cnfldtop 24699 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ Top
342 unicntop 24701 . . . . . . . . . . . . . . . . . . . 20 ℂ = (TopOpen‘ℂfld)
343342restid 17339 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
344341, 343ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
345344eqcomi 2742 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
34651, 345, 345cncfcn 24831 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
34774, 75, 346sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
348340, 347eleqtrd 2835 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3492, 37sstrid 3942 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
350342cnrest 23201 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
351348, 349, 350syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
352337, 351eqeltrrid 2838 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
35351cnfldtopon 24698 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
354 resttopon 23077 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
355353, 349, 354sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
356 cncnp 23196 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
357355, 353, 356sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
358352, 357mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
359358simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
360 fveq2 6828 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
361360eleq2d 2819 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
362361rspccva 3572 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
363359, 27, 362syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
364334, 363eqeltrd 2833 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
365307eqcomd 2739 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
366365oveq2d 7368 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
367366oveq1d 7367 . . . . . . . . 9 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)))
368367fveq1d 6830 . . . . . . . 8 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
369364, 368eleqtrd 2835 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
370308, 369eqeltrd 2833 . . . . . 6 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
371 eqid 2733 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
372 eqid 2733 . . . . . . 7 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
373206, 208fmptd 7053 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
3744, 36sstrdi 3943 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℂ)
375371, 51, 372, 373, 374, 263ellimc 25802 . . . . . 6 (𝜑 → (((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
376370, 375mpbird 257 . . . . 5 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌))
377134a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
378238a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
379154, 155, 377, 378mulne0d 11776 . . . . . . . . . . 11 (𝜑 → (2 · π) ≠ 0)
380263, 156, 379divcan1d 11905 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
381380eqcomd 2739 . . . . . . . . 9 (𝜑𝑌 = ((𝑌 / (2 · π)) · (2 · π)))
382381oveq2d 7368 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))))
383382fveq2d 6832 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))))
384263, 156, 379divcld 11904 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
38541, 384, 156mul12d 11329 . . . . . . . . . 10 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))))
38641, 154, 155mulassd 11142 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = ((𝑁 + (1 / 2)) · (2 · π)))
387386eqcomd 2739 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · (2 · π)) = (((𝑁 + (1 / 2)) · 2) · π))
388387oveq2d 7368 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)))
38938, 40, 154adddird 11144 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + ((1 / 2) · 2)))
390154, 377recid2d 11900 . . . . . . . . . . . . . 14 (𝜑 → ((1 / 2) · 2) = 1)
391390oveq2d 7368 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 · 2) + ((1 / 2) · 2)) = ((𝑁 · 2) + 1))
392389, 391eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + 1))
393392oveq1d 7367 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = (((𝑁 · 2) + 1) · π))
394393oveq2d 7368 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
395385, 388, 3943eqtrd 2772 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
39638, 154mulcld 11139 . . . . . . . . . . 11 (𝜑 → (𝑁 · 2) ∈ ℂ)
397 1cnd 11114 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
398396, 397addcld 11138 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) + 1) ∈ ℂ)
399384, 398, 155mulassd 11142 . . . . . . . . 9 (𝜑 → (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
400395, 399eqtr4d 2771 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π))
401400fveq2d 6832 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))) = (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)))
402 mod0 13782 . . . . . . . . . . 11 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
40357, 253, 402sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
404282, 403mpbid 232 . . . . . . . . 9 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
4055nnzd 12501 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
406 2z 12510 . . . . . . . . . . . 12 2 ∈ ℤ
407406a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℤ)
408405, 407zmulcld 12589 . . . . . . . . . 10 (𝜑 → (𝑁 · 2) ∈ ℤ)
409408peano2zd 12586 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) + 1) ∈ ℤ)
410404, 409zmulcld 12589 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ)
411 sinkpi 26459 . . . . . . . 8 (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
412410, 411syl 17 . . . . . . 7 (𝜑 → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
413383, 401, 4123eqtrd 2772 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = 0)
414 sincn 26382 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
415414a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
416415, 286cnlimci 25818 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
417413, 416eqeltrrd 2834 . . . . 5 (𝜑 → 0 ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
418301, 376, 417limccog 45744 . . . 4 (𝜑 → 0 ∈ ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌))
41914a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
420213fveq2d 6832 . . . . . . . . 9 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
421223sincld 16041 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
422419, 420, 214, 421fvmptd 6942 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
423224fveq2d 6832 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
424422, 423eqtr4d 2771 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
425424mpteq2dva 5186 . . . . . 6 (𝜑 → (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
42615feqmptd 6896 . . . . . 6 (𝜑𝐹 = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)))
427 fcompt 7072 . . . . . . 7 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ) → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
428293, 373, 427sylancr 587 . . . . . 6 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
429425, 426, 4283eqtr4rd 2779 . . . . 5 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = 𝐹)
430429oveq1d 7367 . . . 4 (𝜑 → ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌) = (𝐹 lim 𝑌))
431418, 430eleqtrd 2835 . . 3 (𝜑 → 0 ∈ (𝐹 lim 𝑌))
432 simpr 484 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 𝑤 = 𝑌)
433432iftrued 4482 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = 0)
434263, 154, 156, 377, 379divdiv32d 11929 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / 2) / (2 · π)) = ((𝑌 / (2 · π)) / 2))
435434oveq1d 7367 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (((𝑌 / (2 · π)) / 2) · (2 · π)))
436263halfcld 12373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 / 2) ∈ ℂ)
437436, 156, 379divcan1d 11905 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (𝑌 / 2))
438384, 154, 156, 377div32d 11927 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · ((2 · π) / 2)))
439155, 154, 377divcan3d 11909 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · π) / 2) = π)
440439oveq2d 7368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / (2 · π)) · ((2 · π) / 2)) = ((𝑌 / (2 · π)) · π))
441438, 440eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · π))
442435, 437, 4413eqtr3d 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 / 2) = ((𝑌 / (2 · π)) · π))
443442fveq2d 6832 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑌 / 2)) = (sin‘((𝑌 / (2 · π)) · π)))
444 sinkpi 26459 . . . . . . . . . . . . . . 15 ((𝑌 / (2 · π)) ∈ ℤ → (sin‘((𝑌 / (2 · π)) · π)) = 0)
445404, 444syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((𝑌 / (2 · π)) · π)) = 0)
446443, 445eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑌 / 2)) = 0)
447446oveq2d 7368 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · 0))
448156mul01d 11319 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · 0) = 0)
449447, 448eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = 0)
450449eqcomd 2739 . . . . . . . . . 10 (𝜑 → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
451450ad2antrr 726 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
452 fvoveq1 7375 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (sin‘(𝑤 / 2)) = (sin‘(𝑌 / 2)))
453452oveq2d 7368 . . . . . . . . . . 11 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑌 / 2))))
454453eqcomd 2739 . . . . . . . . . 10 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
455454adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
456433, 451, 4553eqtrd 2772 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
457 iffalse 4483 . . . . . . . . . 10 𝑤 = 𝑌 → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
458457adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
459 fvoveq1 7375 . . . . . . . . . . 11 (𝑦 = 𝑤 → (sin‘(𝑦 / 2)) = (sin‘(𝑤 / 2)))
460459oveq2d 7368 . . . . . . . . . 10 (𝑦 = 𝑤 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
461120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (2 · π) ∈ ℂ)
462328halfcld 12373 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) ∈ ℂ)
463462sincld 16041 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (sin‘(𝑤 / 2)) ∈ ℂ)
464461, 463mulcld 11139 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
465464adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
46623, 460, 324, 465fvmptd3 6958 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐺𝑤) = ((2 · π) · (sin‘(𝑤 / 2))))
467458, 466eqtrd 2768 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
468456, 467pm2.61dan 812 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
469468mpteq2dva 5186 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))))
470 eqid 2733 . . . . . . . . . . 11 (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2))))
47175, 156, 75constcncfg 45994 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (2 · π)) ∈ (ℂ–cn→ℂ))
472 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
473 2cnd 12210 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ∈ ℂ)
474134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ≠ 0)
475472, 473, 474divrec2d 11908 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 / 2) = ((1 / 2) · 𝑤))
476475mpteq2ia 5188 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
477 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
478477mulc1cncf 24826 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ))
47939, 478ax-mp 5 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ)
480476, 479eqeltri 2829 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ)
481480a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ))
482415, 481cncfmpt1f 24835 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (sin‘(𝑤 / 2))) ∈ (ℂ–cn→ℂ))
483471, 482mulcncf 25374 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (ℂ–cn→ℂ))
484470, 483, 349, 75, 464cncfmptssg 45993 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
485 eqid 2733 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
48651, 485, 345cncfcn 24831 . . . . . . . . . . 11 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
487349, 74, 486sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
488484, 487eleqtrd 2835 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
489 cncnp 23196 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
490355, 353, 489sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
491488, 490mpbid 232 . . . . . . . 8 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
492491simprd 495 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
493360eleq2d 2819 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
494493rspccva 3572 . . . . . . 7 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
495492, 27, 494syl2anc 584 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
496469, 495eqeltrd 2833 . . . . 5 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
497307mpteq1d 5183 . . . . 5 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))))
498366eqcomd 2739 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
499498oveq1d 7367 . . . . . 6 (𝜑 → (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
500499fveq1d 6830 . . . . 5 (𝜑 → ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
501496, 497, 5003eltr4d 2848 . . . 4 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
502 eqid 2733 . . . . 5 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤)))
50311, 124syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
504503, 23fmptd 7053 . . . . 5 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
505371, 51, 502, 504, 374, 263ellimc 25802 . . . 4 (𝜑 → (0 ∈ (𝐺 lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
506501, 505mpbird 257 . . 3 (𝜑 → 0 ∈ (𝐺 lim 𝑌))
507256nrexdv 3128 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
508504ffund 6660 . . . . . 6 (𝜑 → Fun 𝐺)
509 fvelima 6893 . . . . . 6 ((Fun 𝐺 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
510508, 509sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
511 2cnd 12210 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
512119a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
513134a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
514238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
515105, 511, 512, 513, 514divdiv1d 11935 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
516515eqcomd 2739 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
517516adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
518 2cnd 12210 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 2 ∈ ℂ)
519119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → π ∈ ℂ)
520518, 519mulcld 11139 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (2 · π) ∈ ℂ)
521232adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
522521halfcld 12373 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
523522sincld 16041 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) ∈ ℂ)
524520, 523mulcld 11139 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
52523fvmpt2 6946 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
526524, 525syldan 591 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
527526eqcomd 2739 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = (𝐺𝑦))
528 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = 0)
529527, 528eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = 0)
530120a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (2 · π) ∈ ℂ)
531232halfcld 12373 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / 2) ∈ ℂ)
532531sincld 16041 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (sin‘(𝑦 / 2)) ∈ ℂ)
533530, 532mul0ord 11772 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
534533adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
535529, 534mpbid 232 . . . . . . . . . . . . 13 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0))
536 2cnne0 12337 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
537119, 238pm3.2i 470 . . . . . . . . . . . . . . 15 (π ∈ ℂ ∧ π ≠ 0)
538 mulne0 11766 . . . . . . . . . . . . . . 15 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (2 · π) ≠ 0)
539536, 537, 538mp2an 692 . . . . . . . . . . . . . 14 (2 · π) ≠ 0
540539neii 2931 . . . . . . . . . . . . 13 ¬ (2 · π) = 0
541 pm2.53 851 . . . . . . . . . . . . 13 (((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0) → (¬ (2 · π) = 0 → (sin‘(𝑦 / 2)) = 0))
542535, 540, 541mpisyl 21 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
543542adantll 714 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
544105adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
545544halfcld 12373 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
546545, 246syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
547543, 546mpbid 232 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 / 2) / π) ∈ ℤ)
548517, 547eqeltrd 2833 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) ∈ ℤ)
54911adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℝ)
550549, 253, 254sylancl 586 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
551548, 550mpbird 257 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 mod (2 · π)) = 0)
552551ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐺𝑦) = 0 → (𝑦 mod (2 · π)) = 0))
553552reximdva 3146 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
554553adantr 480 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
555510, 554mpd 15 . . . 4 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
556507, 555mtand 815 . . 3 (𝜑 → ¬ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌})))
557 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
558111fvmpt2 6946 . . . . . . . . 9 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (π · (cos‘(𝑦 / 2))) ∈ ℂ) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
559557, 201, 558syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
560531coscld 16042 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (cos‘(𝑦 / 2)) ∈ ℂ)
561560adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ∈ ℂ)
562 dirkercncflem2.11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
563512, 561, 514, 562mulne0d 11776 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ≠ 0)
564559, 563eqnetrd 2996 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) ≠ 0)
565564neneqd 2934 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝐼𝑦) = 0)
566565nrexdv 3128 . . . . 5 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
567201, 111fmptd 7053 . . . . . . 7 (𝜑𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
568567ffund 6660 . . . . . 6 (𝜑 → Fun 𝐼)
569 fvelima 6893 . . . . . 6 ((Fun 𝐼 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
570568, 569sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
571566, 570mtand 815 . . . 4 (𝜑 → ¬ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
572199imaeq1d 6012 . . . 4 (𝜑 → ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
573571, 572neleqtrrd 2856 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})))
574 dirkercncflem2.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
575574dirkerval2 46216 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ ℝ) → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
5765, 57, 575syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
577282iftrued 4482 . . . . 5 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
578 dirkercncflem2.l . . . . . . . . . . 11 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
579578a1i 11 . . . . . . . . . 10 (𝜑𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))))
580 iftrue 4480 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
581580adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
582154, 38mulcld 11139 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · 𝑁) ∈ ℂ)
583582, 397addcld 11138 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
584583, 154, 155, 377, 378divdiv1d 11935 . . . . . . . . . . . . . . . 16 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
585584eqcomd 2739 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
586582, 397, 154, 377divdird 11942 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
58738, 154, 377divcan3d 11909 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
588587oveq1d 7367 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
589586, 588eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
590589oveq1d 7367 . . . . . . . . . . . . . . 15 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = ((𝑁 + (1 / 2)) / π))
591585, 590eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
592591ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
593310fveq2d 6832 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑌)))
594593oveq2d 7368 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))))
595 fvoveq1 7375 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
596595oveq2d 7368 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑌 / 2))))
597594, 596oveq12d 7370 . . . . . . . . . . . . . . 15 (𝑤 = 𝑌 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
598597adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
59938, 40, 263adddird 11144 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)))
600397, 154, 263, 377div32d 11927 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 / 2) · 𝑌) = (1 · (𝑌 / 2)))
601436mullidd 11137 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · (𝑌 / 2)) = (𝑌 / 2))
602600, 601eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 / 2) · 𝑌) = (𝑌 / 2))
603602oveq2d 7368 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)) = ((𝑁 · 𝑌) + (𝑌 / 2)))
60438, 263mulcld 11139 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑌) ∈ ℂ)
605604, 436addcomd 11322 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + (𝑌 / 2)) = ((𝑌 / 2) + (𝑁 · 𝑌)))
606599, 603, 6053eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑌 / 2) + (𝑁 · 𝑌)))
607606fveq2d 6832 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘((𝑌 / 2) + (𝑁 · 𝑌))))
608604, 156, 379divcan1d 11905 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑁 · 𝑌) / (2 · π)) · (2 · π)) = (𝑁 · 𝑌))
609608eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · 𝑌) = (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))
610609oveq2d 7368 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) + (𝑁 · 𝑌)) = ((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π))))
611610fveq2d 6832 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (𝑁 · 𝑌))) = (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))))
61238, 263, 156, 379divassd 11939 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) = (𝑁 · (𝑌 / (2 · π))))
613405, 404zmulcld 12589 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · (𝑌 / (2 · π))) ∈ ℤ)
614612, 613eqeltrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ)
615 cosper 26419 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 / 2) ∈ ℂ ∧ ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ) → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
616436, 614, 615syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
617607, 611, 6163eqtrd 2772 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘(𝑌 / 2)))
618617oveq2d 7368 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) = ((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))))
619618oveq1d 7367 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))))
620436coscld 16042 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ∈ ℂ)
621263, 154, 155, 377, 378divdiv1d 11935 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) = (𝑌 / (2 · π)))
622621, 404eqeltrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) ∈ ℤ)
623622zred 12583 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) ∈ ℝ)
624623, 272ltaddrpd 12969 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)))
625 halflt1 12345 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) < 1
626625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 / 2) < 1)
627268, 267, 623, 626ltadd2dd 11279 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1))
628 btwnnz 12555 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌 / 2) / π) ∈ ℤ ∧ ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)) ∧ (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1)) → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
629622, 624, 627, 628syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
630 coseq0 45986 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 / 2) ∈ ℂ → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
631436, 630syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
632629, 631mtbird 325 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (cos‘(𝑌 / 2)) = 0)
633632neqned 2936 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ≠ 0)
63441, 155, 620, 378, 633divcan5rd 11931 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
635619, 634eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
636635ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
637598, 636eqtr2d 2769 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) / π) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
638581, 592, 6373eqtrrd 2773 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
639 iffalse 4483 . . . . . . . . . . . . . 14 𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
640639adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
641 eqidd 2734 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))))
642 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐻𝑦) = (𝐻𝑤))
643 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐼𝑦) = (𝐼𝑤))
644642, 643oveq12d 7370 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
645644adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
646106, 100fmptd 7053 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
647646ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
648647, 324ffvelcdmd 7024 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) ∈ ℂ)
649567ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
650649, 324ffvelcdmd 7024 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ∈ ℂ)
651111a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
652 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
653652fvoveq1d 7374 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
654653oveq2d 7368 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (π · (cos‘(𝑦 / 2))) = (π · (cos‘(𝑤 / 2))))
655119a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → π ∈ ℂ)
656327halfcld 12373 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴(,)𝐵) → (𝑤 / 2) ∈ ℂ)
657656coscld 16042 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → (cos‘(𝑤 / 2)) ∈ ℂ)
658655, 657mulcld 11139 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴(,)𝐵) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
659658ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
660651, 654, 324, 659fvmptd 6942 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) = (π · (cos‘(𝑤 / 2))))
661537a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π ∈ ℂ ∧ π ≠ 0))
662657ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ∈ ℂ)
663 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝜑)
664 fvoveq1 7375 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
665664neeq1d 2988 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → ((cos‘(𝑦 / 2)) ≠ 0 ↔ (cos‘(𝑤 / 2)) ≠ 0))
666226, 665imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)))
667666, 562chvarvv 1990 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)
668663, 324, 667syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
669 mulne0 11766 . . . . . . . . . . . . . . . . 17 (((π ∈ ℂ ∧ π ≠ 0) ∧ ((cos‘(𝑤 / 2)) ∈ ℂ ∧ (cos‘(𝑤 / 2)) ≠ 0)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
670661, 662, 668, 669syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ≠ 0)
671660, 670eqnetrd 2996 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ≠ 0)
672648, 650, 671divcld 11904 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) ∈ ℂ)
673641, 645, 324, 672fvmptd 6942 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤) = ((𝐻𝑤) / (𝐼𝑤)))
674100a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
675317fveq2d 6832 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
676675oveq2d 7368 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
677329coscld 16042 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
678325, 677mulcld 11139 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
679678adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
680674, 676, 324, 679fvmptd 6942 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
681680, 660oveq12d 7370 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
682640, 673, 6813eqtrrd 2773 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
683638, 682pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
684683mpteq2dva 5186 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
685579, 684eqtr2d 2769 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = 𝐿)
686349, 41, 75constcncfg 45994 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
687 cosf 16036 . . . . . . . . . . . . . . . . . . 19 cos:ℂ⟶ℂ
688231, 44sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
689 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))
690688, 689fmptd 7053 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ)
691 fcompt 7072 . . . . . . . . . . . . . . . . . . 19 ((cos:ℂ⟶ℂ ∧ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ) → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
692687, 690, 691sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
693 eqidd 2734 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
694316adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
695 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ (𝐴(,)𝐵))
696693, 694, 695, 329fvmptd 6942 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
697696fveq2d 6832 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
698697mpteq2dva 5186 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))))
699692, 698eqtr2d 2769 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) = (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))))
700349, 41, 75constcncfg 45994 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
701349, 75idcncfg 45995 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝑦) ∈ ((𝐴(,)𝐵)–cn→ℂ))
702700, 701mulcncf 25374 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
703 coscn 26383 . . . . . . . . . . . . . . . . . . 19 cos ∈ (ℂ–cn→ℂ)
704703a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → cos ∈ (ℂ–cn→ℂ))
705702, 704cncfco 24828 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
706699, 705eqeltrd 2833 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
707686, 706mulcncf 25374 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
708 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2))))
709349, 155, 75constcncfg 45994 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→ℂ))
710 2cnd 12210 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
711134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
712328, 710, 711divrecd 11907 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) = (𝑤 · (1 / 2)))
713712mpteq2dva 5186 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))))
714 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) = (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2)))
715 cncfmptid 24834 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71674, 74, 715mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ)
717716a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71874a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
719 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
720718, 719, 718constcncfg 45994 . . . . . . . . . . . . . . . . . . . . . 22 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
72139, 720mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
722717, 721mulcncf 25374 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) ∈ (ℂ–cn→ℂ))
723712, 462eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 · (1 / 2)) ∈ ℂ)
724714, 722, 349, 75, 723cncfmptssg 45993 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
725713, 724eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
726704, 725cncfmpt1f 24835 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑤 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
727709, 726mulcncf 25374 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
728 ssid 3953 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
729728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
730 difssd 4086 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
731658adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
732119a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ∈ ℂ)
733657adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ∈ ℂ)
734238a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ≠ 0)
735595adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
736633adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑌 / 2)) ≠ 0)
737735, 736eqnetrd 2996 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
738737adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
739738, 668pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ≠ 0)
740732, 733, 734, 739mulne0d 11776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
741740neneqd 2934 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) = 0)
742 elsng 4589 . . . . . . . . . . . . . . . . . . 19 ((π · (cos‘(𝑤 / 2))) ∈ ℂ → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
743731, 742syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
744741, 743mtbird 325 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) ∈ {0})
745731, 744eldifd 3909 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ (ℂ ∖ {0}))
746708, 727, 729, 730, 745cncfmptssg 45993 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
747707, 746divcncf 25376 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
748747, 487eleqtrd 2835 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
749579, 748eqeltrd 2833 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
750 cncnp 23196 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
751355, 353, 750sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
752749, 751mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
753752simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
754360eleq2d 2819 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
755754rspccva 3572 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
756753, 27, 755syl2anc 584 . . . . . . . . 9 (𝜑𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
757685, 756eqeltrd 2833 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
758307mpteq1d 5183 . . . . . . . 8 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
759757, 758, 5003eltr4d 2848 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
760 eqid 2733 . . . . . . . 8 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
761100fvmpt2 6946 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
762557, 106, 761syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
763762, 559oveq12d 7370 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))))
764106, 201, 563divcld 11904 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))) ∈ ℂ)
765763, 764eqeltrd 2833 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) ∈ ℂ)
766 eqid 2733 . . . . . . . . 9 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))
767765, 766fmptd 7053 . . . . . . . 8 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
768371, 51, 760, 767, 374, 263ellimc 25802 . . . . . . 7 (𝜑 → ((((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
769759, 768mpbird 257 . . . . . 6 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌))
770103eqcomd 2739 . . . . . . . . . 10 (𝜑𝐻 = (ℝ D 𝐹))
771770fveq1d 6830 . . . . . . . . 9 (𝜑 → (𝐻𝑦) = ((ℝ D 𝐹)‘𝑦))
772199eqcomd 2739 . . . . . . . . . 10 (𝜑𝐼 = (ℝ D 𝐺))
773772fveq1d 6830 . . . . . . . . 9 (𝜑 → (𝐼𝑦) = ((ℝ D 𝐺)‘𝑦))
774771, 773oveq12d 7370 . . . . . . . 8 (𝜑 → ((𝐻𝑦) / (𝐼𝑦)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
775774mpteq2dv 5187 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))))
776775oveq1d 7367 . . . . . 6 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
777769, 776eleqtrd 2835 . . . . 5 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
778577, 777eqeltrd 2833 . . . 4 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
779576, 778eqeltrd 2833 . . 3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
7804, 15, 24, 26, 27, 28, 110, 205, 431, 506, 556, 573, 779lhop 25949 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌))
781574dirkerval 46213 . . . . . 6 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
7825, 781syl 17 . . . . 5 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
783782reseq1d 5931 . . . 4 (𝜑 → ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
7844resmptd 5993 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
785256iffalsed 4485 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
78613recnd 11147 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
78714fvmpt2 6946 . . . . . . . 8 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
788557, 786, 787syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
789557, 503, 525syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
790788, 789oveq12d 7370 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐹𝑦) / (𝐺𝑦)) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
791785, 790eqtr4d 2771 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((𝐹𝑦) / (𝐺𝑦)))
792791mpteq2dva 5186 . . . 4 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))))
793783, 784, 7923eqtrrd 2773 . . 3 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) = ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
794793oveq1d 7367 . 2 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌) = (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
795780, 794eleqtrd 2835 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  cun 3896  wss 3898  ifcif 4474  {csn 4575  {cpr 4577   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153   / cdiv 11781  cn 12132  2c2 12187  cz 12475  +crp 12892  (,)cioo 13247   mod cmo 13775  sincsin 15972  cosccos 15973  πcpi 15975  t crest 17326  TopOpenctopn 17327  topGenctg 17343  fldccnfld 21293  Topctop 22809  TopOnctopon 22826  Clsdccld 22932  intcnt 22933   Cn ccn 23140   CnP ccnp 23141  Hauscha 23224  cnccncf 24797   lim climc 25791   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-t1 23230  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  dirkercncflem3  46227
  Copyright terms: Public domain W3C validator