Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem2 Structured version   Visualization version   GIF version

Theorem dirkercncflem2 46086
Description: Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem2.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem2.f 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
dirkercncflem2.g 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem2.yne0 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
dirkercncflem2.h 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
dirkercncflem2.i 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
dirkercncflem2.l 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
dirkercncflem2.n (𝜑𝑁 ∈ ℕ)
dirkercncflem2.y (𝜑𝑌 ∈ (𝐴(,)𝐵))
dirkercncflem2.ymod (𝜑 → (𝑌 mod (2 · π)) = 0)
dirkercncflem2.11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
Assertion
Ref Expression
dirkercncflem2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Distinct variable groups:   𝑤,𝐴,𝑦   𝑤,𝐵,𝑦   𝑦,𝐷   𝑤,𝐹,𝑦   𝑤,𝐺,𝑦   𝑤,𝐻,𝑦   𝑤,𝐼,𝑦   𝑦,𝐿   𝑤,𝑁,𝑦   𝑤,𝑌,𝑦   𝑦,𝑛   𝜑,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑤,𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐿(𝑤,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem2
StepHypRef Expression
1 difss 4089 . . . . 5 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ (𝐴(,)𝐵)
2 ioossre 13328 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
31, 2sstri 3947 . . . 4 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ
43a1i 11 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5 dirkercncflem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℕ)
76nnred 12161 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℝ)
8 halfre 12355 . . . . . . . 8 (1 / 2) ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
107, 9readdcld 11163 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℝ)
114sselda 3937 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
1210, 11remulcld 11164 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℝ)
1312resincld 16070 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℝ)
14 dirkercncflem2.f . . . 4 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
1513, 14fmptd 7052 . . 3 (𝜑𝐹:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
16 2re 12220 . . . . . . 7 2 ∈ ℝ
17 pire 26382 . . . . . . 7 π ∈ ℝ
1816, 17remulcli 11150 . . . . . 6 (2 · π) ∈ ℝ
1918a1i 11 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
2011rehalfcld 12389 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℝ)
2120resincld 16070 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ∈ ℝ)
2219, 21remulcld 11164 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
23 dirkercncflem2.g . . . 4 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
2422, 23fmptd 7052 . . 3 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
25 iooretop 24669 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
2625a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
27 dirkercncflem2.y . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
28 eqid 2729 . . 3 ((𝐴(,)𝐵) ∖ {𝑌}) = ((𝐴(,)𝐵) ∖ {𝑌})
2914a1i 11 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
3029oveq2d 7369 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
31 resmpt 5992 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
323, 31ax-mp 5 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
3332eqcomi 2738 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
3534oveq2d 7369 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
36 ax-resscn 11085 . . . . . . . . . 10 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
385nncnd 12162 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
39 halfcn 12356 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℂ
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 2) ∈ ℂ)
4138, 40addcld 11153 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
4337sselda 3937 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43mulcld 11154 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
4544sincld 16057 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
46 eqid 2729 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
4745, 46fmptd 7052 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ)
48 ssid 3960 . . . . . . . . . . 11 ℝ ⊆ ℝ
4948, 3pm3.2i 470 . . . . . . . . . 10 (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ))
51 eqid 2729 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
52 tgioo4 24709 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52dvres 25828 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
5437, 47, 50, 53syl21anc 837 . . . . . . . 8 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
55 retop 24665 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
56 rehaus 24703 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Haus
5727elioored 45531 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
58 uniretop 24666 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
5958sncld 23274 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Haus ∧ 𝑌 ∈ ℝ) → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6056, 57, 59sylancr 587 . . . . . . . . . . . 12 (𝜑 → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6158difopn 22937 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ {𝑌} ∈ (Clsd‘(topGen‘ran (,)))) → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
6225, 60, 61sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
63 isopn3i 22985 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6455, 62, 63sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6564reseq2d 5934 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
66 reelprrecn 11120 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
6841adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 + (1 / 2)) ∈ ℂ)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7068, 69mulcld 11154 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
7170sincld 16057 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
72 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
7371, 72fmptd 7052 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ)
74 ssid 3960 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
7574a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
76 dvsinax 45895 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7741, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7877dmeqd 5852 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
79 eqid 2729 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
8070coscld 16058 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
8168, 80mulcld 11154 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
8279, 81dmmptd 6631 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8378, 82eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8436, 83sseqtrrid 3981 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
85 dvres3 25830 . . . . . . . . . . . 12 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
8667, 73, 75, 84, 85syl22anc 838 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
87 resmpt 5992 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8836, 87mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8988oveq2d 7369 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
9077reseq1d 5933 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
91 resmpt 5992 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9236, 91ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
9390, 92eqtrdi 2780 . . . . . . . . . . 11 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9486, 89, 933eqtr3d 2772 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9594reseq1d 5933 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
96 resmpt 5992 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
973, 96mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9865, 95, 973eqtrd 2768 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9935, 54, 983eqtrd 2768 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
100 dirkercncflem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
101100a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
102101eqcomd 2735 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = 𝐻)
10330, 99, 1023eqtrd 2768 . . . . . 6 (𝜑 → (ℝ D 𝐹) = 𝐻)
104103dmeqd 5852 . . . . 5 (𝜑 → dom (ℝ D 𝐹) = dom 𝐻)
10511recnd 11162 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
106105, 81syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
107100, 106dmmptd 6631 . . . . 5 (𝜑 → dom 𝐻 = ((𝐴(,)𝐵) ∖ {𝑌}))
108104, 107eqtr2d 2765 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹))
109 eqimss 3996 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
110108, 109syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
111 dirkercncflem2.i . . . . . . . 8 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
112111a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
113 resmpt 5992 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
1143, 113ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
115114eqcomi 2738 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
116115oveq2i 7364 . . . . . . . . . 10 (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
117116a1i 11 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
118 2cn 12221 . . . . . . . . . . . . . 14 2 ∈ ℂ
119 picn 26383 . . . . . . . . . . . . . 14 π ∈ ℂ
120118, 119mulcli 11141 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
121120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (2 · π) ∈ ℂ)
12243halfcld 12387 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 2) ∈ ℂ)
123122sincld 16057 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝑦 / 2)) ∈ ℂ)
124121, 123mulcld 11154 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
125 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))
126124, 125fmptd 7052 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ)
12751, 52dvres 25828 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12837, 126, 50, 127syl21anc 837 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12964reseq2d 5934 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
13036sseli 3933 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
131 1cnd 11129 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 1 ∈ ℂ)
132 2cnd 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ∈ ℂ)
133 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
134 2ne0 12250 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
135134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ≠ 0)
136131, 132, 133, 135div13d 11942 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = ((𝑦 / 2) · 1))
137 halfcl 12368 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (𝑦 / 2) ∈ ℂ)
138137mulridd 11151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 / 2) · 1) = (𝑦 / 2))
139136, 138eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = (𝑦 / 2))
140139fveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (sin‘((1 / 2) · 𝑦)) = (sin‘(𝑦 / 2)))
141140oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((2 · π) · (sin‘((1 / 2) · 𝑦))) = ((2 · π) · (sin‘(𝑦 / 2))))
142141eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
143130, 142syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
144143adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
145144mpteq2dva 5188 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
146145oveq2d 7369 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
147120a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (2 · π) ∈ ℂ)
14839a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (1 / 2) ∈ ℂ)
149148, 69mulcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → ((1 / 2) · 𝑦) ∈ ℂ)
150149sincld 16057 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (sin‘((1 / 2) · 𝑦)) ∈ ℂ)
151147, 150mulcld 11154 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (sin‘((1 / 2) · 𝑦))) ∈ ℂ)
152 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))
153151, 152fmptd 7052 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ)
154 2cnd 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℂ)
155119a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → π ∈ ℂ)
156154, 155mulcld 11154 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · π) ∈ ℂ)
157 dvasinbx 45902 . . . . . . . . . . . . . . . . . . . 20 (((2 · π) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
158156, 39, 157sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
159 2cnd 12224 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → 2 ∈ ℂ)
160119a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → π ∈ ℂ)
161159, 160, 148mul32d 11344 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = ((2 · (1 / 2)) · π))
162134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℂ) → 2 ≠ 0)
163159, 162recidd 11913 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → (2 · (1 / 2)) = 1)
164163oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · (1 / 2)) · π) = (1 · π))
165160mullidd 11152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → (1 · π) = π)
166161, 164, 1653eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = π)
167139fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
168167adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
169166, 168oveq12d 7371 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦))) = (π · (cos‘(𝑦 / 2))))
170169mpteq2dva 5188 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
171158, 170eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
172171dmeqd 5852 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
173 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2))))
17469halfcld 12387 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (𝑦 / 2) ∈ ℂ)
175174coscld 16058 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝑦 / 2)) ∈ ℂ)
176160, 175mulcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
177173, 176dmmptd 6631 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = ℂ)
178172, 177eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ℂ)
17936, 178sseqtrrid 3981 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
180 dvres3 25830 . . . . . . . . . . . . . . 15 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))) → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
18167, 153, 75, 179, 180syl22anc 838 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
182 resmpt 5992 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
18336, 182mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
184183oveq2d 7369 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
185171reseq1d 5933 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
186181, 184, 1853eqtr3d 2772 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
187 resmpt 5992 . . . . . . . . . . . . . 14 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
18836, 187ax-mp 5 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2))))
189186, 188eqtrdi 2780 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
190146, 189eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
191190reseq1d 5933 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
1924resmptd 5995 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
193129, 191, 1923eqtrd 2768 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
194117, 128, 1933eqtrd 2768 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
195194eqcomd 2735 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
19623a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
197196oveq2d 7369 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
198197eqcomd 2735 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D 𝐺))
199112, 195, 1983eqtrrd 2769 . . . . . 6 (𝜑 → (ℝ D 𝐺) = 𝐼)
200199dmeqd 5852 . . . . 5 (𝜑 → dom (ℝ D 𝐺) = dom 𝐼)
201105, 176syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
202111, 201dmmptd 6631 . . . . 5 (𝜑 → dom 𝐼 = ((𝐴(,)𝐵) ∖ {𝑌}))
203200, 202eqtr2d 2765 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺))
204 eqimss 3996 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
205203, 204syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
206105, 70syldan 591 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
207206ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
208 eqid 2729 . . . . . . . 8 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))
209208fnmpt 6626 . . . . . . 7 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
210207, 209syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
211 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
212 simpr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
213212oveq2d 7369 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
214 simpr 484 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
21538adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℂ)
216 1cnd 11129 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
217216halfcld 12387 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℂ)
218215, 217addcld 11153 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℂ)
219 eldifi 4084 . . . . . . . . . . . . . 14 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ (𝐴(,)𝐵))
220219elioored 45531 . . . . . . . . . . . . 13 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℝ)
221220recnd 11162 . . . . . . . . . . . 12 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℂ)
222221adantl 481 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ℂ)
223218, 222mulcld 11154 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
224211, 213, 214, 223fvmptd 6941 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
225 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↔ 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})))
226225anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ↔ (𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))))
227 oveq1 7360 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 mod (2 · π)) = (𝑤 mod (2 · π)))
228227neeq1d 2984 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑦 mod (2 · π)) ≠ 0 ↔ (𝑤 mod (2 · π)) ≠ 0))
229226, 228imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)))
230 eldifi 4084 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
231 elioore 13296 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ)
232230, 231, 1303syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℂ)
233 2cnd 12224 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ∈ ℂ)
234119a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ∈ ℂ)
235134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ≠ 0)
236 0re 11136 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
237 pipos 26384 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
238236, 237gtneii 11246 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ≠ 0)
240232, 233, 234, 235, 239divdiv1d 11949 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
241240eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
242241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
243 dirkercncflem2.yne0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
244243neneqd 2930 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
245105halfcld 12387 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
246 sineq0 26449 . . . . . . . . . . . . . . . . . . 19 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
247245, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
248244, 247mtbid 324 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
249242, 248eqneltrd 2848 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
250 2rp 12916 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
251 pirp 26386 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ+
252 rpmulcl 12936 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
253250, 251, 252mp2an 692 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℝ+
254 mod0 13798 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
25511, 253, 254sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
256249, 255mtbird 325 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 mod (2 · π)) = 0)
257256neqned 2932 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0)
258229, 257chvarvv 1989 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)
259258neneqd 2930 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑤 mod (2 · π)) = 0)
260 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝜑)
261 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
262221ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 ∈ ℂ)
26357recnd 11162 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
264263ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑌 ∈ ℂ)
265 0red 11137 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
2665nnred 12161 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
267 1red 11135 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
268267rehalfcld 12389 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ)
269266, 268readdcld 11163 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
2705nngt0d 12195 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑁)
271250a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℝ+)
272271rpreccld 12965 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ+)
273266, 272ltaddrpd 12988 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 < (𝑁 + (1 / 2)))
274265, 266, 269, 270, 273lttrd 11295 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < (𝑁 + (1 / 2)))
275274gt0ne0d 11702 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 + (1 / 2)) ≠ 0)
27641, 275jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
277276ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
278 mulcan 11775 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
279262, 264, 277, 278syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
280261, 279mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 = 𝑌)
281 oveq1 7360 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → (𝑤 mod (2 · π)) = (𝑌 mod (2 · π)))
282 dirkercncflem2.ymod . . . . . . . . . . . . . 14 (𝜑 → (𝑌 mod (2 · π)) = 0)
283281, 282sylan9eqr 2786 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝑌) → (𝑤 mod (2 · π)) = 0)
284260, 280, 283syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (𝑤 mod (2 · π)) = 0)
285259, 284mtand 815 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
28641, 263mulcld 11154 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
287286adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
288 elsn2g 4618 . . . . . . . . . . . 12 (((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
289287, 288syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
290285, 289mtbird 325 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)})
291223, 290eldifd 3916 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
292224, 291eqeltrd 2828 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
293 sinf 16051 . . . . . . . . . . . 12 sin:ℂ⟶ℂ
294293fdmi 6667 . . . . . . . . . . 11 dom sin = ℂ
295294eqcomi 2738 . . . . . . . . . 10 ℂ = dom sin
296295a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ℂ = dom sin)
297296difeq1d 4078 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}) = (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
298292, 297eleqtrd 2830 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
299298ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
300 fnfvrnss 7059 . . . . . 6 (((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)})) → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
301210, 299, 300syl2anc 584 . . . . 5 (𝜑 → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
302 uncom 4111 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
303302a1i 11 . . . . . . . . 9 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})))
30427snssd 4763 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
305 undif 4435 . . . . . . . . . 10 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
306304, 305sylib 218 . . . . . . . . 9 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
307303, 306eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
308307mpteq1d 5185 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
309 iftrue 4484 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑌))
310 oveq2 7361 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
311309, 310eqtr4d 2767 . . . . . . . . . . . 12 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
312311adantl 481 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
313 iffalse 4487 . . . . . . . . . . . . 13 𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
314313adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
315 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
316 oveq2 7361 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
317316adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
318 simpl 482 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ (𝐴(,)𝐵))
319 id 22 . . . . . . . . . . . . . . . . 17 𝑤 = 𝑌 → ¬ 𝑤 = 𝑌)
320 velsn 4595 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑌} ↔ 𝑤 = 𝑌)
321319, 320sylnibr 329 . . . . . . . . . . . . . . . 16 𝑤 = 𝑌 → ¬ 𝑤 ∈ {𝑌})
322321adantl 481 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → ¬ 𝑤 ∈ {𝑌})
323318, 322eldifd 3916 . . . . . . . . . . . . . 14 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
324323adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
32541adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℂ)
326 elioore 13296 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℝ)
327326recnd 11162 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℂ)
328327adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ ℂ)
329325, 328mulcld 11154 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
330329adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
331315, 317, 324, 330fvmptd 6941 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
332314, 331eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
333312, 332pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
334333mpteq2dva 5188 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
335 ioosscn 13329 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
336 resmpt 5992 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
337335, 336ax-mp 5 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤))
338 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤))
339338mulc1cncf 24814 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34041, 339syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34151cnfldtop 24687 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ Top
342 unicntop 24689 . . . . . . . . . . . . . . . . . . . 20 ℂ = (TopOpen‘ℂfld)
343342restid 17355 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
344341, 343ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
345344eqcomi 2738 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
34651, 345, 345cncfcn 24819 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
34774, 75, 346sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
348340, 347eleqtrd 2830 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3492, 37sstrid 3949 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
350342cnrest 23188 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
351348, 349, 350syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
352337, 351eqeltrrid 2833 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
35351cnfldtopon 24686 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
354 resttopon 23064 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
355353, 349, 354sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
356 cncnp 23183 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
357355, 353, 356sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
358352, 357mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
359358simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
360 fveq2 6826 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
361360eleq2d 2814 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
362361rspccva 3578 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
363359, 27, 362syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
364334, 363eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
365307eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
366365oveq2d 7369 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
367366oveq1d 7368 . . . . . . . . 9 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)))
368367fveq1d 6828 . . . . . . . 8 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
369364, 368eleqtrd 2830 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
370308, 369eqeltrd 2828 . . . . . 6 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
371 eqid 2729 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
372 eqid 2729 . . . . . . 7 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
373206, 208fmptd 7052 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
3744, 36sstrdi 3950 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℂ)
375371, 51, 372, 373, 374, 263ellimc 25790 . . . . . 6 (𝜑 → (((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
376370, 375mpbird 257 . . . . 5 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌))
377134a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
378238a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
379154, 155, 377, 378mulne0d 11790 . . . . . . . . . . 11 (𝜑 → (2 · π) ≠ 0)
380263, 156, 379divcan1d 11919 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
381380eqcomd 2735 . . . . . . . . 9 (𝜑𝑌 = ((𝑌 / (2 · π)) · (2 · π)))
382381oveq2d 7369 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))))
383382fveq2d 6830 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))))
384263, 156, 379divcld 11918 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
38541, 384, 156mul12d 11343 . . . . . . . . . 10 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))))
38641, 154, 155mulassd 11157 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = ((𝑁 + (1 / 2)) · (2 · π)))
387386eqcomd 2735 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · (2 · π)) = (((𝑁 + (1 / 2)) · 2) · π))
388387oveq2d 7369 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)))
38938, 40, 154adddird 11159 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + ((1 / 2) · 2)))
390154, 377recid2d 11914 . . . . . . . . . . . . . 14 (𝜑 → ((1 / 2) · 2) = 1)
391390oveq2d 7369 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 · 2) + ((1 / 2) · 2)) = ((𝑁 · 2) + 1))
392389, 391eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + 1))
393392oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = (((𝑁 · 2) + 1) · π))
394393oveq2d 7369 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
395385, 388, 3943eqtrd 2768 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
39638, 154mulcld 11154 . . . . . . . . . . 11 (𝜑 → (𝑁 · 2) ∈ ℂ)
397 1cnd 11129 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
398396, 397addcld 11153 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) + 1) ∈ ℂ)
399384, 398, 155mulassd 11157 . . . . . . . . 9 (𝜑 → (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
400395, 399eqtr4d 2767 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π))
401400fveq2d 6830 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))) = (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)))
402 mod0 13798 . . . . . . . . . . 11 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
40357, 253, 402sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
404282, 403mpbid 232 . . . . . . . . 9 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
4055nnzd 12516 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
406 2z 12525 . . . . . . . . . . . 12 2 ∈ ℤ
407406a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℤ)
408405, 407zmulcld 12604 . . . . . . . . . 10 (𝜑 → (𝑁 · 2) ∈ ℤ)
409408peano2zd 12601 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) + 1) ∈ ℤ)
410404, 409zmulcld 12604 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ)
411 sinkpi 26447 . . . . . . . 8 (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
412410, 411syl 17 . . . . . . 7 (𝜑 → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
413383, 401, 4123eqtrd 2768 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = 0)
414 sincn 26370 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
415414a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
416415, 286cnlimci 25806 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
417413, 416eqeltrrd 2829 . . . . 5 (𝜑 → 0 ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
418301, 376, 417limccog 45602 . . . 4 (𝜑 → 0 ∈ ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌))
41914a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
420213fveq2d 6830 . . . . . . . . 9 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
421223sincld 16057 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
422419, 420, 214, 421fvmptd 6941 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
423224fveq2d 6830 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
424422, 423eqtr4d 2767 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
425424mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
42615feqmptd 6895 . . . . . 6 (𝜑𝐹 = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)))
427 fcompt 7071 . . . . . . 7 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ) → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
428293, 373, 427sylancr 587 . . . . . 6 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
429425, 426, 4283eqtr4rd 2775 . . . . 5 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = 𝐹)
430429oveq1d 7368 . . . 4 (𝜑 → ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌) = (𝐹 lim 𝑌))
431418, 430eleqtrd 2830 . . 3 (𝜑 → 0 ∈ (𝐹 lim 𝑌))
432 simpr 484 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 𝑤 = 𝑌)
433432iftrued 4486 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = 0)
434263, 154, 156, 377, 379divdiv32d 11943 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / 2) / (2 · π)) = ((𝑌 / (2 · π)) / 2))
435434oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (((𝑌 / (2 · π)) / 2) · (2 · π)))
436263halfcld 12387 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 / 2) ∈ ℂ)
437436, 156, 379divcan1d 11919 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (𝑌 / 2))
438384, 154, 156, 377div32d 11941 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · ((2 · π) / 2)))
439155, 154, 377divcan3d 11923 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · π) / 2) = π)
440439oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / (2 · π)) · ((2 · π) / 2)) = ((𝑌 / (2 · π)) · π))
441438, 440eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · π))
442435, 437, 4413eqtr3d 2772 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 / 2) = ((𝑌 / (2 · π)) · π))
443442fveq2d 6830 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑌 / 2)) = (sin‘((𝑌 / (2 · π)) · π)))
444 sinkpi 26447 . . . . . . . . . . . . . . 15 ((𝑌 / (2 · π)) ∈ ℤ → (sin‘((𝑌 / (2 · π)) · π)) = 0)
445404, 444syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((𝑌 / (2 · π)) · π)) = 0)
446443, 445eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑌 / 2)) = 0)
447446oveq2d 7369 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · 0))
448156mul01d 11333 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · 0) = 0)
449447, 448eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = 0)
450449eqcomd 2735 . . . . . . . . . 10 (𝜑 → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
451450ad2antrr 726 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
452 fvoveq1 7376 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (sin‘(𝑤 / 2)) = (sin‘(𝑌 / 2)))
453452oveq2d 7369 . . . . . . . . . . 11 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑌 / 2))))
454453eqcomd 2735 . . . . . . . . . 10 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
455454adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
456433, 451, 4553eqtrd 2768 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
457 iffalse 4487 . . . . . . . . . 10 𝑤 = 𝑌 → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
458457adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
459 fvoveq1 7376 . . . . . . . . . . 11 (𝑦 = 𝑤 → (sin‘(𝑦 / 2)) = (sin‘(𝑤 / 2)))
460459oveq2d 7369 . . . . . . . . . 10 (𝑦 = 𝑤 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
461120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (2 · π) ∈ ℂ)
462328halfcld 12387 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) ∈ ℂ)
463462sincld 16057 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (sin‘(𝑤 / 2)) ∈ ℂ)
464461, 463mulcld 11154 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
465464adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
46623, 460, 324, 465fvmptd3 6957 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐺𝑤) = ((2 · π) · (sin‘(𝑤 / 2))))
467458, 466eqtrd 2764 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
468456, 467pm2.61dan 812 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
469468mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))))
470 eqid 2729 . . . . . . . . . . 11 (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2))))
47175, 156, 75constcncfg 45854 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (2 · π)) ∈ (ℂ–cn→ℂ))
472 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
473 2cnd 12224 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ∈ ℂ)
474134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ≠ 0)
475472, 473, 474divrec2d 11922 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 / 2) = ((1 / 2) · 𝑤))
476475mpteq2ia 5190 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
477 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
478477mulc1cncf 24814 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ))
47939, 478ax-mp 5 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ)
480476, 479eqeltri 2824 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ)
481480a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ))
482415, 481cncfmpt1f 24823 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (sin‘(𝑤 / 2))) ∈ (ℂ–cn→ℂ))
483471, 482mulcncf 25362 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (ℂ–cn→ℂ))
484470, 483, 349, 75, 464cncfmptssg 45853 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
485 eqid 2729 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
48651, 485, 345cncfcn 24819 . . . . . . . . . . 11 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
487349, 74, 486sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
488484, 487eleqtrd 2830 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
489 cncnp 23183 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
490355, 353, 489sylancl 586 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
491488, 490mpbid 232 . . . . . . . 8 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
492491simprd 495 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
493360eleq2d 2814 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
494493rspccva 3578 . . . . . . 7 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
495492, 27, 494syl2anc 584 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
496469, 495eqeltrd 2828 . . . . 5 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
497307mpteq1d 5185 . . . . 5 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))))
498366eqcomd 2735 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
499498oveq1d 7368 . . . . . 6 (𝜑 → (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
500499fveq1d 6828 . . . . 5 (𝜑 → ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
501496, 497, 5003eltr4d 2843 . . . 4 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
502 eqid 2729 . . . . 5 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤)))
50311, 124syldan 591 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
504503, 23fmptd 7052 . . . . 5 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
505371, 51, 502, 504, 374, 263ellimc 25790 . . . 4 (𝜑 → (0 ∈ (𝐺 lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
506501, 505mpbird 257 . . 3 (𝜑 → 0 ∈ (𝐺 lim 𝑌))
507256nrexdv 3124 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
508504ffund 6660 . . . . . 6 (𝜑 → Fun 𝐺)
509 fvelima 6892 . . . . . 6 ((Fun 𝐺 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
510508, 509sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
511 2cnd 12224 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
512119a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
513134a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
514238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
515105, 511, 512, 513, 514divdiv1d 11949 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
516515eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
517516adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
518 2cnd 12224 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 2 ∈ ℂ)
519119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → π ∈ ℂ)
520518, 519mulcld 11154 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (2 · π) ∈ ℂ)
521232adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
522521halfcld 12387 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
523522sincld 16057 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) ∈ ℂ)
524520, 523mulcld 11154 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
52523fvmpt2 6945 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
526524, 525syldan 591 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
527526eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = (𝐺𝑦))
528 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = 0)
529527, 528eqtrd 2764 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = 0)
530120a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (2 · π) ∈ ℂ)
531232halfcld 12387 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / 2) ∈ ℂ)
532531sincld 16057 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (sin‘(𝑦 / 2)) ∈ ℂ)
533530, 532mul0ord 11786 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
534533adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
535529, 534mpbid 232 . . . . . . . . . . . . 13 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0))
536 2cnne0 12351 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
537119, 238pm3.2i 470 . . . . . . . . . . . . . . 15 (π ∈ ℂ ∧ π ≠ 0)
538 mulne0 11780 . . . . . . . . . . . . . . 15 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (2 · π) ≠ 0)
539536, 537, 538mp2an 692 . . . . . . . . . . . . . 14 (2 · π) ≠ 0
540539neii 2927 . . . . . . . . . . . . 13 ¬ (2 · π) = 0
541 pm2.53 851 . . . . . . . . . . . . 13 (((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0) → (¬ (2 · π) = 0 → (sin‘(𝑦 / 2)) = 0))
542535, 540, 541mpisyl 21 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
543542adantll 714 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
544105adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
545544halfcld 12387 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
546545, 246syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
547543, 546mpbid 232 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 / 2) / π) ∈ ℤ)
548517, 547eqeltrd 2828 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) ∈ ℤ)
54911adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℝ)
550549, 253, 254sylancl 586 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
551548, 550mpbird 257 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 mod (2 · π)) = 0)
552551ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐺𝑦) = 0 → (𝑦 mod (2 · π)) = 0))
553552reximdva 3142 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
554553adantr 480 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
555510, 554mpd 15 . . . 4 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
556507, 555mtand 815 . . 3 (𝜑 → ¬ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌})))
557 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
558111fvmpt2 6945 . . . . . . . . 9 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (π · (cos‘(𝑦 / 2))) ∈ ℂ) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
559557, 201, 558syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
560531coscld 16058 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (cos‘(𝑦 / 2)) ∈ ℂ)
561560adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ∈ ℂ)
562 dirkercncflem2.11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
563512, 561, 514, 562mulne0d 11790 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ≠ 0)
564559, 563eqnetrd 2992 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) ≠ 0)
565564neneqd 2930 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝐼𝑦) = 0)
566565nrexdv 3124 . . . . 5 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
567201, 111fmptd 7052 . . . . . . 7 (𝜑𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
568567ffund 6660 . . . . . 6 (𝜑 → Fun 𝐼)
569 fvelima 6892 . . . . . 6 ((Fun 𝐼 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
570568, 569sylan 580 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
571566, 570mtand 815 . . . 4 (𝜑 → ¬ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
572199imaeq1d 6014 . . . 4 (𝜑 → ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
573571, 572neleqtrrd 2851 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})))
574 dirkercncflem2.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
575574dirkerval2 46076 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ ℝ) → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
5765, 57, 575syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
577282iftrued 4486 . . . . 5 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
578 dirkercncflem2.l . . . . . . . . . . 11 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
579578a1i 11 . . . . . . . . . 10 (𝜑𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))))
580 iftrue 4484 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
581580adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
582154, 38mulcld 11154 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · 𝑁) ∈ ℂ)
583582, 397addcld 11153 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
584583, 154, 155, 377, 378divdiv1d 11949 . . . . . . . . . . . . . . . 16 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
585584eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
586582, 397, 154, 377divdird 11956 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
58738, 154, 377divcan3d 11923 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
588587oveq1d 7368 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
589586, 588eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
590589oveq1d 7368 . . . . . . . . . . . . . . 15 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = ((𝑁 + (1 / 2)) / π))
591585, 590eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
592591ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
593310fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑌)))
594593oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))))
595 fvoveq1 7376 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
596595oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑌 / 2))))
597594, 596oveq12d 7371 . . . . . . . . . . . . . . 15 (𝑤 = 𝑌 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
598597adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
59938, 40, 263adddird 11159 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)))
600397, 154, 263, 377div32d 11941 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 / 2) · 𝑌) = (1 · (𝑌 / 2)))
601436mullidd 11152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · (𝑌 / 2)) = (𝑌 / 2))
602600, 601eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 / 2) · 𝑌) = (𝑌 / 2))
603602oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)) = ((𝑁 · 𝑌) + (𝑌 / 2)))
60438, 263mulcld 11154 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑌) ∈ ℂ)
605604, 436addcomd 11336 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + (𝑌 / 2)) = ((𝑌 / 2) + (𝑁 · 𝑌)))
606599, 603, 6053eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑌 / 2) + (𝑁 · 𝑌)))
607606fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘((𝑌 / 2) + (𝑁 · 𝑌))))
608604, 156, 379divcan1d 11919 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑁 · 𝑌) / (2 · π)) · (2 · π)) = (𝑁 · 𝑌))
609608eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · 𝑌) = (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))
610609oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) + (𝑁 · 𝑌)) = ((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π))))
611610fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (𝑁 · 𝑌))) = (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))))
61238, 263, 156, 379divassd 11953 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) = (𝑁 · (𝑌 / (2 · π))))
613405, 404zmulcld 12604 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · (𝑌 / (2 · π))) ∈ ℤ)
614612, 613eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ)
615 cosper 26407 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 / 2) ∈ ℂ ∧ ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ) → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
616436, 614, 615syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
617607, 611, 6163eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘(𝑌 / 2)))
618617oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) = ((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))))
619618oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))))
620436coscld 16058 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ∈ ℂ)
621263, 154, 155, 377, 378divdiv1d 11949 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) = (𝑌 / (2 · π)))
622621, 404eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) ∈ ℤ)
623622zred 12598 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) ∈ ℝ)
624623, 272ltaddrpd 12988 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)))
625 halflt1 12359 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) < 1
626625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 / 2) < 1)
627268, 267, 623, 626ltadd2dd 11293 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1))
628 btwnnz 12570 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌 / 2) / π) ∈ ℤ ∧ ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)) ∧ (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1)) → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
629622, 624, 627, 628syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
630 coseq0 45846 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 / 2) ∈ ℂ → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
631436, 630syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
632629, 631mtbird 325 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (cos‘(𝑌 / 2)) = 0)
633632neqned 2932 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ≠ 0)
63441, 155, 620, 378, 633divcan5rd 11945 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
635619, 634eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
636635ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
637598, 636eqtr2d 2765 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) / π) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
638581, 592, 6373eqtrrd 2769 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
639 iffalse 4487 . . . . . . . . . . . . . 14 𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
640639adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
641 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))))
642 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐻𝑦) = (𝐻𝑤))
643 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐼𝑦) = (𝐼𝑤))
644642, 643oveq12d 7371 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
645644adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
646106, 100fmptd 7052 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
647646ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
648647, 324ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) ∈ ℂ)
649567ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
650649, 324ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ∈ ℂ)
651111a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
652 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
653652fvoveq1d 7375 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
654653oveq2d 7369 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (π · (cos‘(𝑦 / 2))) = (π · (cos‘(𝑤 / 2))))
655119a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → π ∈ ℂ)
656327halfcld 12387 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴(,)𝐵) → (𝑤 / 2) ∈ ℂ)
657656coscld 16058 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → (cos‘(𝑤 / 2)) ∈ ℂ)
658655, 657mulcld 11154 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴(,)𝐵) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
659658ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
660651, 654, 324, 659fvmptd 6941 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) = (π · (cos‘(𝑤 / 2))))
661537a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π ∈ ℂ ∧ π ≠ 0))
662657ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ∈ ℂ)
663 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝜑)
664 fvoveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
665664neeq1d 2984 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → ((cos‘(𝑦 / 2)) ≠ 0 ↔ (cos‘(𝑤 / 2)) ≠ 0))
666226, 665imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)))
667666, 562chvarvv 1989 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)
668663, 324, 667syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
669 mulne0 11780 . . . . . . . . . . . . . . . . 17 (((π ∈ ℂ ∧ π ≠ 0) ∧ ((cos‘(𝑤 / 2)) ∈ ℂ ∧ (cos‘(𝑤 / 2)) ≠ 0)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
670661, 662, 668, 669syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ≠ 0)
671660, 670eqnetrd 2992 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ≠ 0)
672648, 650, 671divcld 11918 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) ∈ ℂ)
673641, 645, 324, 672fvmptd 6941 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤) = ((𝐻𝑤) / (𝐼𝑤)))
674100a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
675317fveq2d 6830 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
676675oveq2d 7369 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
677329coscld 16058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
678325, 677mulcld 11154 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
679678adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
680674, 676, 324, 679fvmptd 6941 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
681680, 660oveq12d 7371 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
682640, 673, 6813eqtrrd 2769 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
683638, 682pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
684683mpteq2dva 5188 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
685579, 684eqtr2d 2765 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = 𝐿)
686349, 41, 75constcncfg 45854 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
687 cosf 16052 . . . . . . . . . . . . . . . . . . 19 cos:ℂ⟶ℂ
688231, 44sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
689 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))
690688, 689fmptd 7052 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ)
691 fcompt 7071 . . . . . . . . . . . . . . . . . . 19 ((cos:ℂ⟶ℂ ∧ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ) → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
692687, 690, 691sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
693 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
694316adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
695 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ (𝐴(,)𝐵))
696693, 694, 695, 329fvmptd 6941 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
697696fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
698697mpteq2dva 5188 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))))
699692, 698eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) = (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))))
700349, 41, 75constcncfg 45854 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
701349, 75idcncfg 45855 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝑦) ∈ ((𝐴(,)𝐵)–cn→ℂ))
702700, 701mulcncf 25362 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
703 coscn 26371 . . . . . . . . . . . . . . . . . . 19 cos ∈ (ℂ–cn→ℂ)
704703a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → cos ∈ (ℂ–cn→ℂ))
705702, 704cncfco 24816 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
706699, 705eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
707686, 706mulcncf 25362 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
708 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2))))
709349, 155, 75constcncfg 45854 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→ℂ))
710 2cnd 12224 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
711134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
712328, 710, 711divrecd 11921 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) = (𝑤 · (1 / 2)))
713712mpteq2dva 5188 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))))
714 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) = (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2)))
715 cncfmptid 24822 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71674, 74, 715mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ)
717716a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71874a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
719 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
720718, 719, 718constcncfg 45854 . . . . . . . . . . . . . . . . . . . . . 22 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
72139, 720mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
722717, 721mulcncf 25362 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) ∈ (ℂ–cn→ℂ))
723712, 462eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 · (1 / 2)) ∈ ℂ)
724714, 722, 349, 75, 723cncfmptssg 45853 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
725713, 724eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
726704, 725cncfmpt1f 24823 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑤 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
727709, 726mulcncf 25362 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
728 ssid 3960 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
729728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
730 difssd 4090 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
731658adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
732119a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ∈ ℂ)
733657adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ∈ ℂ)
734238a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ≠ 0)
735595adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
736633adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑌 / 2)) ≠ 0)
737735, 736eqnetrd 2992 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
738737adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
739738, 668pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ≠ 0)
740732, 733, 734, 739mulne0d 11790 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
741740neneqd 2930 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) = 0)
742 elsng 4593 . . . . . . . . . . . . . . . . . . 19 ((π · (cos‘(𝑤 / 2))) ∈ ℂ → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
743731, 742syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
744741, 743mtbird 325 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) ∈ {0})
745731, 744eldifd 3916 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ (ℂ ∖ {0}))
746708, 727, 729, 730, 745cncfmptssg 45853 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
747707, 746divcncf 25364 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
748747, 487eleqtrd 2830 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
749579, 748eqeltrd 2828 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
750 cncnp 23183 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
751355, 353, 750sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
752749, 751mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
753752simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
754360eleq2d 2814 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
755754rspccva 3578 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
756753, 27, 755syl2anc 584 . . . . . . . . 9 (𝜑𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
757685, 756eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
758307mpteq1d 5185 . . . . . . . 8 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
759757, 758, 5003eltr4d 2843 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
760 eqid 2729 . . . . . . . 8 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
761100fvmpt2 6945 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
762557, 106, 761syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
763762, 559oveq12d 7371 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))))
764106, 201, 563divcld 11918 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))) ∈ ℂ)
765763, 764eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) ∈ ℂ)
766 eqid 2729 . . . . . . . . 9 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))
767765, 766fmptd 7052 . . . . . . . 8 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
768371, 51, 760, 767, 374, 263ellimc 25790 . . . . . . 7 (𝜑 → ((((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
769759, 768mpbird 257 . . . . . 6 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌))
770103eqcomd 2735 . . . . . . . . . 10 (𝜑𝐻 = (ℝ D 𝐹))
771770fveq1d 6828 . . . . . . . . 9 (𝜑 → (𝐻𝑦) = ((ℝ D 𝐹)‘𝑦))
772199eqcomd 2735 . . . . . . . . . 10 (𝜑𝐼 = (ℝ D 𝐺))
773772fveq1d 6828 . . . . . . . . 9 (𝜑 → (𝐼𝑦) = ((ℝ D 𝐺)‘𝑦))
774771, 773oveq12d 7371 . . . . . . . 8 (𝜑 → ((𝐻𝑦) / (𝐼𝑦)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
775774mpteq2dv 5189 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))))
776775oveq1d 7368 . . . . . 6 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
777769, 776eleqtrd 2830 . . . . 5 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
778577, 777eqeltrd 2828 . . . 4 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
779576, 778eqeltrd 2828 . . 3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
7804, 15, 24, 26, 27, 28, 110, 205, 431, 506, 556, 573, 779lhop 25937 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌))
781574dirkerval 46073 . . . . . 6 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
7825, 781syl 17 . . . . 5 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
783782reseq1d 5933 . . . 4 (𝜑 → ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
7844resmptd 5995 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
785256iffalsed 4489 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
78613recnd 11162 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
78714fvmpt2 6945 . . . . . . . 8 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
788557, 786, 787syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
789557, 503, 525syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
790788, 789oveq12d 7371 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐹𝑦) / (𝐺𝑦)) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
791785, 790eqtr4d 2767 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((𝐹𝑦) / (𝐺𝑦)))
792791mpteq2dva 5188 . . . 4 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))))
793783, 784, 7923eqtrrd 2769 . . 3 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) = ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
794793oveq1d 7368 . 2 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌) = (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
795780, 794eleqtrd 2830 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cun 3903  wss 3905  ifcif 4478  {csn 4579  {cpr 4581   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  ccom 5627  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168   / cdiv 11795  cn 12146  2c2 12201  cz 12489  +crp 12911  (,)cioo 13266   mod cmo 13791  sincsin 15988  cosccos 15989  πcpi 15991  t crest 17342  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  Topctop 22796  TopOnctopon 22813  Clsdccld 22919  intcnt 22920   Cn ccn 23127   CnP ccnp 23128  Hauscha 23211  cnccncf 24785   lim climc 25779   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-t1 23217  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  dirkercncflem3  46087
  Copyright terms: Public domain W3C validator