Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem2 Structured version   Visualization version   GIF version

Theorem dirkercncflem2 46025
Description: Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem2.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem2.f 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
dirkercncflem2.g 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem2.yne0 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
dirkercncflem2.h 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
dirkercncflem2.i 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
dirkercncflem2.l 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
dirkercncflem2.n (𝜑𝑁 ∈ ℕ)
dirkercncflem2.y (𝜑𝑌 ∈ (𝐴(,)𝐵))
dirkercncflem2.ymod (𝜑 → (𝑌 mod (2 · π)) = 0)
dirkercncflem2.11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
Assertion
Ref Expression
dirkercncflem2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Distinct variable groups:   𝑤,𝐴,𝑦   𝑤,𝐵,𝑦   𝑦,𝐷   𝑤,𝐹,𝑦   𝑤,𝐺,𝑦   𝑤,𝐻,𝑦   𝑤,𝐼,𝑦   𝑦,𝐿   𝑤,𝑁,𝑦   𝑤,𝑌,𝑦   𝑦,𝑛   𝜑,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑤,𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐿(𝑤,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem2
StepHypRef Expression
1 difss 4159 . . . . 5 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ (𝐴(,)𝐵)
2 ioossre 13468 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
31, 2sstri 4018 . . . 4 ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ
43a1i 11 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5 dirkercncflem2.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
65adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℕ)
76nnred 12308 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℝ)
8 halfre 12507 . . . . . . . 8 (1 / 2) ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℝ)
107, 9readdcld 11319 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℝ)
114sselda 4008 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℝ)
1210, 11remulcld 11320 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℝ)
1312resincld 16191 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℝ)
14 dirkercncflem2.f . . . 4 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
1513, 14fmptd 7148 . . 3 (𝜑𝐹:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
16 2re 12367 . . . . . . 7 2 ∈ ℝ
17 pire 26518 . . . . . . 7 π ∈ ℝ
1816, 17remulcli 11306 . . . . . 6 (2 · π) ∈ ℝ
1918a1i 11 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (2 · π) ∈ ℝ)
2011rehalfcld 12540 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℝ)
2120resincld 16191 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ∈ ℝ)
2219, 21remulcld 11320 . . . 4 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
23 dirkercncflem2.g . . . 4 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
2422, 23fmptd 7148 . . 3 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℝ)
25 iooretop 24807 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
2625a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
27 dirkercncflem2.y . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
28 eqid 2740 . . 3 ((𝐴(,)𝐵) ∖ {𝑌}) = ((𝐴(,)𝐵) ∖ {𝑌})
2914a1i 11 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
3029oveq2d 7464 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
31 resmpt 6066 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
323, 31ax-mp 5 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
3332eqcomi 2749 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
3534oveq2d 7464 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
36 ax-resscn 11241 . . . . . . . . . 10 ℝ ⊆ ℂ
3736a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
385nncnd 12309 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
39 halfcn 12508 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℂ
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 2) ∈ ℂ)
4138, 40addcld 11309 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
4337sselda 4008 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
4442, 43mulcld 11310 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
4544sincld 16178 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
46 eqid 2740 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
4745, 46fmptd 7148 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ)
48 ssid 4031 . . . . . . . . . . 11 ℝ ⊆ ℝ
4948, 3pm3.2i 470 . . . . . . . . . 10 (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ))
51 eqid 2740 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5251tgioo2 24844 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52dvres 25966 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
5437, 47, 50, 53syl21anc 837 . . . . . . . 8 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
55 retop 24803 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
56 rehaus 24840 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Haus
5727elioored 45467 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
58 uniretop 24804 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
5958sncld 23400 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Haus ∧ 𝑌 ∈ ℝ) → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6056, 57, 59sylancr 586 . . . . . . . . . . . 12 (𝜑 → {𝑌} ∈ (Clsd‘(topGen‘ran (,))))
6158difopn 23063 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ {𝑌} ∈ (Clsd‘(topGen‘ran (,)))) → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
6225, 60, 61sylancr 586 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,)))
63 isopn3i 23111 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6455, 62, 63sylancr 586 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌})) = ((𝐴(,)𝐵) ∖ {𝑌}))
6564reseq2d 6009 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
66 reelprrecn 11276 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
6841adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 + (1 / 2)) ∈ ℂ)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
7068, 69mulcld 11310 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
7170sincld 16178 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
72 eqid 2740 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) = (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
7371, 72fmptd 7148 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ)
74 ssid 4031 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
7574a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
76 dvsinax 45834 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7741, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
7877dmeqd 5930 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
79 eqid 2740 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
8070coscld 16179 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
8168, 80mulcld 11310 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
8279, 81dmmptd 6725 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8378, 82eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = ℂ)
8436, 83sseqtrrid 4062 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
85 dvres3 25968 . . . . . . . . . . . 12 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
8667, 73, 75, 84, 85syl22anc 838 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
87 resmpt 6066 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8836, 87mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
8988oveq2d 7464 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))))
9077reseq1d 6008 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ))
91 resmpt 6066 . . . . . . . . . . . . 13 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9236, 91ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
9390, 92eqtrdi 2796 . . . . . . . . . . 11 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9486, 89, 933eqtr3d 2788 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9594reseq1d 6008 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
96 resmpt 6066 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
973, 96mp1i 13 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9865, 95, 973eqtrd 2784 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
9935, 54, 983eqtrd 2784 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
100 dirkercncflem2.h . . . . . . . . 9 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
101100a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
102101eqcomd 2746 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) = 𝐻)
10330, 99, 1023eqtrd 2784 . . . . . 6 (𝜑 → (ℝ D 𝐹) = 𝐻)
104103dmeqd 5930 . . . . 5 (𝜑 → dom (ℝ D 𝐹) = dom 𝐻)
10511recnd 11318 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ℂ)
106105, 81syldan 590 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ)
107100, 106dmmptd 6725 . . . . 5 (𝜑 → dom 𝐻 = ((𝐴(,)𝐵) ∖ {𝑌}))
108104, 107eqtr2d 2781 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹))
109 eqimss 4067 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐹) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
110108, 109syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐹))
111 dirkercncflem2.i . . . . . . . 8 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
112111a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
113 resmpt 6066 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
1143, 113ax-mp 5 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
115114eqcomi 2749 . . . . . . . . . . 11 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))
116115oveq2i 7459 . . . . . . . . . 10 (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
117116a1i 11 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))))
118 2cn 12368 . . . . . . . . . . . . . 14 2 ∈ ℂ
119 picn 26519 . . . . . . . . . . . . . 14 π ∈ ℂ
120118, 119mulcli 11297 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
121120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (2 · π) ∈ ℂ)
12243halfcld 12538 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 2) ∈ ℂ)
123122sincld 16178 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝑦 / 2)) ∈ ℂ)
124121, 123mulcld 11310 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
125 eqid 2740 . . . . . . . . . . 11 (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))
126124, 125fmptd 7148 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ)
12751, 52dvres 25966 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12837, 126, 50, 127syl21anc 837 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))))
12964reseq2d 6009 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
13036sseli 4004 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
131 1cnd 11285 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 1 ∈ ℂ)
132 2cnd 12371 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ∈ ℂ)
133 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
134 2ne0 12397 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
135134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → 2 ≠ 0)
136131, 132, 133, 135div13d 12094 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = ((𝑦 / 2) · 1))
137 halfcl 12518 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (𝑦 / 2) ∈ ℂ)
138137mulridd 11307 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℂ → ((𝑦 / 2) · 1) = (𝑦 / 2))
139136, 138eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℂ → ((1 / 2) · 𝑦) = (𝑦 / 2))
140139fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (sin‘((1 / 2) · 𝑦)) = (sin‘(𝑦 / 2)))
141140oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → ((2 · π) · (sin‘((1 / 2) · 𝑦))) = ((2 · π) · (sin‘(𝑦 / 2))))
142141eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
143130, 142syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
144143adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘((1 / 2) · 𝑦))))
145144mpteq2dva 5266 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
146145oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
147120a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (2 · π) ∈ ℂ)
14839a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (1 / 2) ∈ ℂ)
149148, 69mulcld 11310 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → ((1 / 2) · 𝑦) ∈ ℂ)
150149sincld 16178 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (sin‘((1 / 2) · 𝑦)) ∈ ℂ)
151147, 150mulcld 11310 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (sin‘((1 / 2) · 𝑦))) ∈ ℂ)
152 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))
153151, 152fmptd 7148 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ)
154 2cnd 12371 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℂ)
155119a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → π ∈ ℂ)
156154, 155mulcld 11310 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · π) ∈ ℂ)
157 dvasinbx 45841 . . . . . . . . . . . . . . . . . . . 20 (((2 · π) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
158156, 39, 157sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))))
159 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → 2 ∈ ℂ)
160119a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → π ∈ ℂ)
161159, 160, 148mul32d 11500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = ((2 · (1 / 2)) · π))
162134a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℂ) → 2 ≠ 0)
163159, 162recidd 12065 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ ℂ) → (2 · (1 / 2)) = 1)
164163oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → ((2 · (1 / 2)) · π) = (1 · π))
165160mullidd 11308 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ ℂ) → (1 · π) = π)
166161, 164, 1653eqtrd 2784 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → ((2 · π) · (1 / 2)) = π)
167139fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
168167adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ ℂ) → (cos‘((1 / 2) · 𝑦)) = (cos‘(𝑦 / 2)))
169166, 168oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦))) = (π · (cos‘(𝑦 / 2))))
170169mpteq2dva 5266 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ ℂ ↦ (((2 · π) · (1 / 2)) · (cos‘((1 / 2) · 𝑦)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
171158, 170eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
172171dmeqd 5930 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))))
173 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2))))
17469halfcld 12538 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ ℂ) → (𝑦 / 2) ∈ ℂ)
175174coscld 16179 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝑦 / 2)) ∈ ℂ)
176160, 175mulcld 11310 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
177173, 176dmmptd 6725 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) = ℂ)
178172, 177eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ℂ)
17936, 178sseqtrrid 4062 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
180 dvres3 25968 . . . . . . . . . . . . . . 15 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))) → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
18167, 153, 75, 179, 180syl22anc 838 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ))
182 resmpt 6066 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
18336, 182mp1i 13 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))))
184183oveq2d 7464 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦)))) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))))
185171reseq1d 6008 . . . . . . . . . . . . . 14 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
186181, 184, 1853eqtr3d 2788 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ))
187 resmpt 6066 . . . . . . . . . . . . . 14 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
18836, 187ax-mp 5 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2))))
189186, 188eqtrdi 2796 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘((1 / 2) · 𝑦))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
190146, 189eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))))
191190reseq1d 6008 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
1924resmptd 6069 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ ℝ ↦ (π · (cos‘(𝑦 / 2)))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
193129, 191, 1923eqtrd 2784 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘((𝐴(,)𝐵) ∖ {𝑌}))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
194117, 128, 1933eqtrd 2784 . . . . . . . 8 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
195194eqcomd 2746 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
19623a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
197196oveq2d 7464 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))))
198197eqcomd 2746 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (ℝ D 𝐺))
199112, 195, 1983eqtrrd 2785 . . . . . 6 (𝜑 → (ℝ D 𝐺) = 𝐼)
200199dmeqd 5930 . . . . 5 (𝜑 → dom (ℝ D 𝐺) = dom 𝐼)
201105, 176syldan 590 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ∈ ℂ)
202111, 201dmmptd 6725 . . . . 5 (𝜑 → dom 𝐼 = ((𝐴(,)𝐵) ∖ {𝑌}))
203200, 202eqtr2d 2781 . . . 4 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺))
204 eqimss 4067 . . . 4 (((𝐴(,)𝐵) ∖ {𝑌}) = dom (ℝ D 𝐺) → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
205203, 204syl 17 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ dom (ℝ D 𝐺))
206105, 70syldan 590 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
207206ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
208 eqid 2740 . . . . . . . 8 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))
209208fnmpt 6720 . . . . . . 7 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
210207, 209syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}))
211 eqidd 2741 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
212 simpr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
213212oveq2d 7464 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
214 simpr 484 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
21538adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑁 ∈ ℂ)
216 1cnd 11285 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 1 ∈ ℂ)
217216halfcld 12538 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (1 / 2) ∈ ℂ)
218215, 217addcld 11309 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑁 + (1 / 2)) ∈ ℂ)
219 eldifi 4154 . . . . . . . . . . . . . 14 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ (𝐴(,)𝐵))
220219elioored 45467 . . . . . . . . . . . . 13 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℝ)
221220recnd 11318 . . . . . . . . . . . 12 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑤 ∈ ℂ)
222221adantl 481 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑤 ∈ ℂ)
223218, 222mulcld 11310 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
224211, 213, 214, 223fvmptd 7036 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
225 eleq1w 2827 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↔ 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})))
226225anbi2d 629 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ↔ (𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))))
227 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝑦 mod (2 · π)) = (𝑤 mod (2 · π)))
228227neeq1d 3006 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝑦 mod (2 · π)) ≠ 0 ↔ (𝑤 mod (2 · π)) ≠ 0))
229226, 228imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)))
230 eldifi 4154 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ (𝐴(,)𝐵))
231 elioore 13437 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ ℝ)
232230, 231, 1303syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 𝑦 ∈ ℂ)
233 2cnd 12371 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ∈ ℂ)
234119a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ∈ ℂ)
235134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → 2 ≠ 0)
236 0re 11292 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
237 pipos 26520 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
238236, 237gtneii 11402 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → π ≠ 0)
240232, 233, 234, 235, 239divdiv1d 12101 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
241240eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
242241adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
243 dirkercncflem2.yne0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
244243neneqd 2951 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (sin‘(𝑦 / 2)) = 0)
245105halfcld 12538 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / 2) ∈ ℂ)
246 sineq0 26584 . . . . . . . . . . . . . . . . . . 19 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
247245, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
248244, 247mtbid 324 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
249242, 248eqneltrd 2864 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
250 2rp 13062 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
251 pirp 26521 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ+
252 rpmulcl 13080 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
253250, 251, 252mp2an 691 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℝ+
254 mod0 13927 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
25511, 253, 254sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
256249, 255mtbird 325 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑦 mod (2 · π)) = 0)
257256neqned 2953 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 mod (2 · π)) ≠ 0)
258229, 257chvarvv 1998 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑤 mod (2 · π)) ≠ 0)
259258neneqd 2951 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝑤 mod (2 · π)) = 0)
260 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝜑)
261 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
262221ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 ∈ ℂ)
26357recnd 11318 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
264263ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑌 ∈ ℂ)
265 0red 11293 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
2665nnred 12308 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
267 1red 11291 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
268267rehalfcld 12540 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ)
269266, 268readdcld 11319 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
2705nngt0d 12342 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝑁)
271250a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℝ+)
272271rpreccld 13109 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 / 2) ∈ ℝ+)
273266, 272ltaddrpd 13132 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 < (𝑁 + (1 / 2)))
274265, 266, 269, 270, 273lttrd 11451 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < (𝑁 + (1 / 2)))
275274gt0ne0d 11854 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 + (1 / 2)) ≠ 0)
27641, 275jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
277276ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0))
278 mulcan 11927 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ ((𝑁 + (1 / 2)) ∈ ℂ ∧ (𝑁 + (1 / 2)) ≠ 0)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
279262, 264, 277, 278syl3anc 1371 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌) ↔ 𝑤 = 𝑌))
280261, 279mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → 𝑤 = 𝑌)
281 oveq1 7455 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → (𝑤 mod (2 · π)) = (𝑌 mod (2 · π)))
282 dirkercncflem2.ymod . . . . . . . . . . . . . 14 (𝜑 → (𝑌 mod (2 · π)) = 0)
283281, 282sylan9eqr 2802 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝑌) → (𝑤 mod (2 · π)) = 0)
284260, 280, 283syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)) → (𝑤 mod (2 · π)) = 0)
285259, 284mtand 815 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
28641, 263mulcld 11310 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
287286adantr 480 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ)
288 elsn2g 4686 . . . . . . . . . . . 12 (((𝑁 + (1 / 2)) · 𝑌) ∈ ℂ → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
289287, 288syl 17 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)} ↔ ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌)))
290285, 289mtbird 325 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ ((𝑁 + (1 / 2)) · 𝑤) ∈ {((𝑁 + (1 / 2)) · 𝑌)})
291223, 290eldifd 3987 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑁 + (1 / 2)) · 𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
292224, 291eqeltrd 2844 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
293 sinf 16172 . . . . . . . . . . . 12 sin:ℂ⟶ℂ
294293fdmi 6758 . . . . . . . . . . 11 dom sin = ℂ
295294eqcomi 2749 . . . . . . . . . 10 ℂ = dom sin
296295a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ℂ = dom sin)
297296difeq1d 4148 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (ℂ ∖ {((𝑁 + (1 / 2)) · 𝑌)}) = (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
298292, 297eleqtrd 2846 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
299298ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
300 fnfvrnss 7155 . . . . . 6 (((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) Fn ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ∀𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) ∈ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)})) → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
301210, 299, 300syl2anc 583 . . . . 5 (𝜑 → ran (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ⊆ (dom sin ∖ {((𝑁 + (1 / 2)) · 𝑌)}))
302 uncom 4181 . . . . . . . . . 10 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
303302a1i 11 . . . . . . . . 9 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})))
30427snssd 4834 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
305 undif 4505 . . . . . . . . . 10 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
306304, 305sylib 218 . . . . . . . . 9 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
307303, 306eqtrd 2780 . . . . . . . 8 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
308307mpteq1d 5261 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
309 iftrue 4554 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑌))
310 oveq2 7456 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑌))
311309, 310eqtr4d 2783 . . . . . . . . . . . 12 (𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
312311adantl 481 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
313 iffalse 4557 . . . . . . . . . . . . 13 𝑤 = 𝑌 → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
314313adantl 481 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))
315 eqidd 2741 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
316 oveq2 7456 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
317316adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
318 simpl 482 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ (𝐴(,)𝐵))
319 id 22 . . . . . . . . . . . . . . . . 17 𝑤 = 𝑌 → ¬ 𝑤 = 𝑌)
320 velsn 4664 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑌} ↔ 𝑤 = 𝑌)
321319, 320sylnibr 329 . . . . . . . . . . . . . . . 16 𝑤 = 𝑌 → ¬ 𝑤 ∈ {𝑌})
322321adantl 481 . . . . . . . . . . . . . . 15 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → ¬ 𝑤 ∈ {𝑌})
323318, 322eldifd 3987 . . . . . . . . . . . . . 14 ((𝑤 ∈ (𝐴(,)𝐵) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
324323adantll 713 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
32541adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑁 + (1 / 2)) ∈ ℂ)
326 elioore 13437 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℝ)
327326recnd 11318 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) → 𝑤 ∈ ℂ)
328327adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ ℂ)
329325, 328mulcld 11310 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
330329adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · 𝑤) ∈ ℂ)
331315, 317, 324, 330fvmptd 7036 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
332314, 331eqtrd 2780 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
333312, 332pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = ((𝑁 + (1 / 2)) · 𝑤))
334333mpteq2dva 5266 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
335 ioosscn 13469 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
336 resmpt 6066 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ⊆ ℂ → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)))
337335, 336ax-mp 5 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤))
338 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤))
339338mulc1cncf 24950 . . . . . . . . . . . . . . . 16 ((𝑁 + (1 / 2)) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34041, 339syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (ℂ–cn→ℂ))
34151cnfldtop 24825 . . . . . . . . . . . . . . . . . . 19 (TopOpen‘ℂfld) ∈ Top
342 unicntop 24827 . . . . . . . . . . . . . . . . . . . 20 ℂ = (TopOpen‘ℂfld)
343342restid 17493 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
344341, 343ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
345344eqcomi 2749 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
34651, 345, 345cncfcn 24955 . . . . . . . . . . . . . . . 16 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
34774, 75, 346sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
348340, 347eleqtrd 2846 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3492, 37sstrid 4020 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
350342cnrest 23314 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
351348, 349, 350syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → ((𝑤 ∈ ℂ ↦ ((𝑁 + (1 / 2)) · 𝑤)) ↾ (𝐴(,)𝐵)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
352337, 351eqeltrrid 2849 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
35351cnfldtopon 24824 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
354 resttopon 23190 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
355353, 349, 354sylancr 586 . . . . . . . . . . . . 13 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
356 cncnp 23309 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
357355, 353, 356sylancl 585 . . . . . . . . . . . 12 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
358352, 357mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
359358simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
360 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = 𝑌 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
361360eleq2d 2830 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
362361rspccva 3634 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
363359, 27, 362syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑤)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
364334, 363eqeltrd 2844 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
365307eqcomd 2746 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
366365oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
367366oveq1d 7463 . . . . . . . . 9 (𝜑 → (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)))
368367fveq1d 6922 . . . . . . . 8 (𝜑 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
369364, 368eleqtrd 2846 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
370308, 369eqeltrd 2844 . . . . . 6 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
371 eqid 2740 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))
372 eqid 2740 . . . . . . 7 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
373206, 208fmptd 7148 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
3744, 36sstrdi 4021 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℂ)
375371, 51, 372, 373, 374, 263ellimc 25928 . . . . . 6 (𝜑 → (((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, ((𝑁 + (1 / 2)) · 𝑌), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
376370, 375mpbird 257 . . . . 5 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)) lim 𝑌))
377134a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
378238a1i 11 . . . . . . . . . . . 12 (𝜑 → π ≠ 0)
379154, 155, 377, 378mulne0d 11942 . . . . . . . . . . 11 (𝜑 → (2 · π) ≠ 0)
380263, 156, 379divcan1d 12071 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
381380eqcomd 2746 . . . . . . . . 9 (𝜑𝑌 = ((𝑌 / (2 · π)) · (2 · π)))
382381oveq2d 7464 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))))
383382fveq2d 6924 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))))
384263, 156, 379divcld 12070 . . . . . . . . . . 11 (𝜑 → (𝑌 / (2 · π)) ∈ ℂ)
38541, 384, 156mul12d 11499 . . . . . . . . . 10 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))))
38641, 154, 155mulassd 11313 . . . . . . . . . . . 12 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = ((𝑁 + (1 / 2)) · (2 · π)))
387386eqcomd 2746 . . . . . . . . . . 11 (𝜑 → ((𝑁 + (1 / 2)) · (2 · π)) = (((𝑁 + (1 / 2)) · 2) · π))
388387oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 + (1 / 2)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)))
38938, 40, 154adddird 11315 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + ((1 / 2) · 2)))
390154, 377recid2d 12066 . . . . . . . . . . . . . 14 (𝜑 → ((1 / 2) · 2) = 1)
391390oveq2d 7464 . . . . . . . . . . . . 13 (𝜑 → ((𝑁 · 2) + ((1 / 2) · 2)) = ((𝑁 · 2) + 1))
392389, 391eqtrd 2780 . . . . . . . . . . . 12 (𝜑 → ((𝑁 + (1 / 2)) · 2) = ((𝑁 · 2) + 1))
393392oveq1d 7463 . . . . . . . . . . 11 (𝜑 → (((𝑁 + (1 / 2)) · 2) · π) = (((𝑁 · 2) + 1) · π))
394393oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((𝑌 / (2 · π)) · (((𝑁 + (1 / 2)) · 2) · π)) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
395385, 388, 3943eqtrd 2784 . . . . . . . . 9 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
39638, 154mulcld 11310 . . . . . . . . . . 11 (𝜑 → (𝑁 · 2) ∈ ℂ)
397 1cnd 11285 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
398396, 397addcld 11309 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) + 1) ∈ ℂ)
399384, 398, 155mulassd 11313 . . . . . . . . 9 (𝜑 → (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π) = ((𝑌 / (2 · π)) · (((𝑁 · 2) + 1) · π)))
400395, 399eqtr4d 2783 . . . . . . . 8 (𝜑 → ((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π))) = (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π))
401400fveq2d 6924 . . . . . . 7 (𝜑 → (sin‘((𝑁 + (1 / 2)) · ((𝑌 / (2 · π)) · (2 · π)))) = (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)))
402 mod0 13927 . . . . . . . . . . 11 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
40357, 253, 402sylancl 585 . . . . . . . . . 10 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
404282, 403mpbid 232 . . . . . . . . 9 (𝜑 → (𝑌 / (2 · π)) ∈ ℤ)
4055nnzd 12666 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
406 2z 12675 . . . . . . . . . . . 12 2 ∈ ℤ
407406a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℤ)
408405, 407zmulcld 12753 . . . . . . . . . 10 (𝜑 → (𝑁 · 2) ∈ ℤ)
409408peano2zd 12750 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) + 1) ∈ ℤ)
410404, 409zmulcld 12753 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ)
411 sinkpi 26582 . . . . . . . 8 (((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) ∈ ℤ → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
412410, 411syl 17 . . . . . . 7 (𝜑 → (sin‘(((𝑌 / (2 · π)) · ((𝑁 · 2) + 1)) · π)) = 0)
413383, 401, 4123eqtrd 2784 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) = 0)
414 sincn 26506 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
415414a1i 11 . . . . . . 7 (𝜑 → sin ∈ (ℂ–cn→ℂ))
416415, 286cnlimci 25944 . . . . . 6 (𝜑 → (sin‘((𝑁 + (1 / 2)) · 𝑌)) ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
417413, 416eqeltrrd 2845 . . . . 5 (𝜑 → 0 ∈ (sin lim ((𝑁 + (1 / 2)) · 𝑌)))
418301, 376, 417limccog 45541 . . . 4 (𝜑 → 0 ∈ ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌))
41914a1i 11 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))))
420213fveq2d 6924 . . . . . . . . 9 (((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ 𝑦 = 𝑤) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
421223sincld 16178 . . . . . . . . 9 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
422419, 420, 214, 421fvmptd 7036 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
423224fveq2d 6924 . . . . . . . 8 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑤)))
424422, 423eqtr4d 2783 . . . . . . 7 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑤) = (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)))
425424mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
42615feqmptd 6990 . . . . . 6 (𝜑𝐹 = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (𝐹𝑤)))
427 fcompt 7167 . . . . . . 7 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦)):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ) → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
428293, 373, 427sylancr 586 . . . . . 6 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
429425, 426, 4283eqtr4rd 2791 . . . . 5 (𝜑 → (sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = 𝐹)
430429oveq1d 7463 . . . 4 (𝜑 → ((sin ∘ (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · 𝑦))) lim 𝑌) = (𝐹 lim 𝑌))
431418, 430eleqtrd 2846 . . 3 (𝜑 → 0 ∈ (𝐹 lim 𝑌))
432 simpr 484 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 𝑤 = 𝑌)
433432iftrued 4556 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = 0)
434263, 154, 156, 377, 379divdiv32d 12095 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / 2) / (2 · π)) = ((𝑌 / (2 · π)) / 2))
435434oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (((𝑌 / (2 · π)) / 2) · (2 · π)))
436263halfcld 12538 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 / 2) ∈ ℂ)
437436, 156, 379divcan1d 12071 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / 2) / (2 · π)) · (2 · π)) = (𝑌 / 2))
438384, 154, 156, 377div32d 12093 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · ((2 · π) / 2)))
439155, 154, 377divcan3d 12075 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · π) / 2) = π)
440439oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑌 / (2 · π)) · ((2 · π) / 2)) = ((𝑌 / (2 · π)) · π))
441438, 440eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑌 / (2 · π)) / 2) · (2 · π)) = ((𝑌 / (2 · π)) · π))
442435, 437, 4413eqtr3d 2788 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 / 2) = ((𝑌 / (2 · π)) · π))
443442fveq2d 6924 . . . . . . . . . . . . . 14 (𝜑 → (sin‘(𝑌 / 2)) = (sin‘((𝑌 / (2 · π)) · π)))
444 sinkpi 26582 . . . . . . . . . . . . . . 15 ((𝑌 / (2 · π)) ∈ ℤ → (sin‘((𝑌 / (2 · π)) · π)) = 0)
445404, 444syl 17 . . . . . . . . . . . . . 14 (𝜑 → (sin‘((𝑌 / (2 · π)) · π)) = 0)
446443, 445eqtrd 2780 . . . . . . . . . . . . 13 (𝜑 → (sin‘(𝑌 / 2)) = 0)
447446oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · 0))
448156mul01d 11489 . . . . . . . . . . . 12 (𝜑 → ((2 · π) · 0) = 0)
449447, 448eqtrd 2780 . . . . . . . . . . 11 (𝜑 → ((2 · π) · (sin‘(𝑌 / 2))) = 0)
450449eqcomd 2746 . . . . . . . . . 10 (𝜑 → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
451450ad2antrr 725 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → 0 = ((2 · π) · (sin‘(𝑌 / 2))))
452 fvoveq1 7471 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (sin‘(𝑤 / 2)) = (sin‘(𝑌 / 2)))
453452oveq2d 7464 . . . . . . . . . . 11 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑌 / 2))))
454453eqcomd 2746 . . . . . . . . . 10 (𝑤 = 𝑌 → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
455454adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑌 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
456433, 451, 4553eqtrd 2784 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
457 iffalse 4557 . . . . . . . . . 10 𝑤 = 𝑌 → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
458457adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = (𝐺𝑤))
459 fvoveq1 7471 . . . . . . . . . . 11 (𝑦 = 𝑤 → (sin‘(𝑦 / 2)) = (sin‘(𝑤 / 2)))
460459oveq2d 7464 . . . . . . . . . 10 (𝑦 = 𝑤 → ((2 · π) · (sin‘(𝑦 / 2))) = ((2 · π) · (sin‘(𝑤 / 2))))
461120a1i 11 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (2 · π) ∈ ℂ)
462328halfcld 12538 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) ∈ ℂ)
463462sincld 16178 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (sin‘(𝑤 / 2)) ∈ ℂ)
464461, 463mulcld 11310 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
465464adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((2 · π) · (sin‘(𝑤 / 2))) ∈ ℂ)
46623, 460, 324, 465fvmptd3 7052 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐺𝑤) = ((2 · π) · (sin‘(𝑤 / 2))))
467458, 466eqtrd 2780 . . . . . . . 8 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
468456, 467pm2.61dan 812 . . . . . . 7 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → if(𝑤 = 𝑌, 0, (𝐺𝑤)) = ((2 · π) · (sin‘(𝑤 / 2))))
469468mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))))
470 eqid 2740 . . . . . . . . . . 11 (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2))))
47175, 156, 75constcncfg 45793 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (2 · π)) ∈ (ℂ–cn→ℂ))
472 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
473 2cnd 12371 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ∈ ℂ)
474134a1i 11 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 2 ≠ 0)
475472, 473, 474divrec2d 12074 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 / 2) = ((1 / 2) · 𝑤))
476475mpteq2ia 5269 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
477 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) = (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤))
478477mulc1cncf 24950 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ))
47939, 478ax-mp 5 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ ((1 / 2) · 𝑤)) ∈ (ℂ–cn→ℂ)
480476, 479eqeltri 2840 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ)
481480a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 / 2)) ∈ (ℂ–cn→ℂ))
482415, 481cncfmpt1f 24959 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℂ ↦ (sin‘(𝑤 / 2))) ∈ (ℂ–cn→ℂ))
483471, 482mulcncf 25499 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℂ ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (ℂ–cn→ℂ))
484470, 483, 349, 75, 464cncfmptssg 45792 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
485 eqid 2740 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
48651, 485, 345cncfcn 24955 . . . . . . . . . . 11 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
487349, 74, 486sylancl 585 . . . . . . . . . 10 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
488484, 487eleqtrd 2846 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
489 cncnp 23309 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
490355, 353, 489sylancl 585 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
491488, 490mpbid 232 . . . . . . . 8 (𝜑 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))):(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
492491simprd 495 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
493360eleq2d 2830 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
494493rspccva 3634 . . . . . . 7 ((∀𝑦 ∈ (𝐴(,)𝐵)(𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
495492, 27, 494syl2anc 583 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
496469, 495eqeltrd 2844 . . . . 5 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
497307mpteq1d 5261 . . . . 5 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))))
498366eqcomd 2746 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
499498oveq1d 7463 . . . . . 6 (𝜑 → (((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)))
500499fveq1d 6922 . . . . 5 (𝜑 → ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
501496, 497, 5003eltr4d 2859 . . . 4 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
502 eqid 2740 . . . . 5 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤)))
50311, 124syldan 590 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
504503, 23fmptd 7148 . . . . 5 (𝜑𝐺:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
505371, 51, 502, 504, 374, 263ellimc 25928 . . . 4 (𝜑 → (0 ∈ (𝐺 lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, 0, (𝐺𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
506501, 505mpbird 257 . . 3 (𝜑 → 0 ∈ (𝐺 lim 𝑌))
507256nrexdv 3155 . . . 4 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
508504ffund 6751 . . . . . 6 (𝜑 → Fun 𝐺)
509 fvelima 6987 . . . . . 6 ((Fun 𝐺 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
510508, 509sylan 579 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0)
511 2cnd 12371 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ∈ ℂ)
512119a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ∈ ℂ)
513134a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 2 ≠ 0)
514238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → π ≠ 0)
515105, 511, 512, 513, 514divdiv1d 12101 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
516515eqcomd 2746 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
517516adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) = ((𝑦 / 2) / π))
518 2cnd 12371 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 2 ∈ ℂ)
519119a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → π ∈ ℂ)
520518, 519mulcld 11310 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (2 · π) ∈ ℂ)
521232adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
522521halfcld 12538 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
523522sincld 16178 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) ∈ ℂ)
524520, 523mulcld 11310 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
52523fvmpt2 7040 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
526524, 525syldan 590 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
527526eqcomd 2746 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = (𝐺𝑦))
528 simpr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (𝐺𝑦) = 0)
529527, 528eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) · (sin‘(𝑦 / 2))) = 0)
530120a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (2 · π) ∈ ℂ)
531232halfcld 12538 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (𝑦 / 2) ∈ ℂ)
532531sincld 16178 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (sin‘(𝑦 / 2)) ∈ ℂ)
533530, 532mul0ord 11940 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
534533adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (((2 · π) · (sin‘(𝑦 / 2))) = 0 ↔ ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0)))
535529, 534mpbid 232 . . . . . . . . . . . . 13 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → ((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0))
536 2cnne0 12503 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
537119, 238pm3.2i 470 . . . . . . . . . . . . . . 15 (π ∈ ℂ ∧ π ≠ 0)
538 mulne0 11932 . . . . . . . . . . . . . . 15 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (2 · π) ≠ 0)
539536, 537, 538mp2an 691 . . . . . . . . . . . . . 14 (2 · π) ≠ 0
540539neii 2948 . . . . . . . . . . . . 13 ¬ (2 · π) = 0
541 pm2.53 850 . . . . . . . . . . . . 13 (((2 · π) = 0 ∨ (sin‘(𝑦 / 2)) = 0) → (¬ (2 · π) = 0 → (sin‘(𝑦 / 2)) = 0))
542535, 540, 541mpisyl 21 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
543542adantll 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (sin‘(𝑦 / 2)) = 0)
544105adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℂ)
545544halfcld 12538 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / 2) ∈ ℂ)
546545, 246syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
547543, 546mpbid 232 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 / 2) / π) ∈ ℤ)
548517, 547eqeltrd 2844 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 / (2 · π)) ∈ ℤ)
54911adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → 𝑦 ∈ ℝ)
550549, 253, 254sylancl 585 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
551548, 550mpbird 257 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) ∧ (𝐺𝑦) = 0) → (𝑦 mod (2 · π)) = 0)
552551ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐺𝑦) = 0 → (𝑦 mod (2 · π)) = 0))
553552reximdva 3174 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
554553adantr 480 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → (∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐺𝑦) = 0 → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0))
555510, 554mpd 15 . . . 4 ((𝜑 ∧ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝑦 mod (2 · π)) = 0)
556507, 555mtand 815 . . 3 (𝜑 → ¬ 0 ∈ (𝐺 “ ((𝐴(,)𝐵) ∖ {𝑌})))
557 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}))
558111fvmpt2 7040 . . . . . . . . 9 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (π · (cos‘(𝑦 / 2))) ∈ ℂ) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
559557, 201, 558syl2anc 583 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) = (π · (cos‘(𝑦 / 2))))
560531coscld 16179 . . . . . . . . . 10 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) → (cos‘(𝑦 / 2)) ∈ ℂ)
561560adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ∈ ℂ)
562 dirkercncflem2.11 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
563512, 561, 514, 562mulne0d 11942 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (π · (cos‘(𝑦 / 2))) ≠ 0)
564559, 563eqnetrd 3014 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐼𝑦) ≠ 0)
565564neneqd 2951 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ¬ (𝐼𝑦) = 0)
566565nrexdv 3155 . . . . 5 (𝜑 → ¬ ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
567201, 111fmptd 7148 . . . . . . 7 (𝜑𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
568567ffund 6751 . . . . . 6 (𝜑 → Fun 𝐼)
569 fvelima 6987 . . . . . 6 ((Fun 𝐼 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
570568, 569sylan 579 . . . . 5 ((𝜑 ∧ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌}))) → ∃𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(𝐼𝑦) = 0)
571566, 570mtand 815 . . . 4 (𝜑 → ¬ 0 ∈ (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
572199imaeq1d 6088 . . . 4 (𝜑 → ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐼 “ ((𝐴(,)𝐵) ∖ {𝑌})))
573571, 572neleqtrrd 2867 . . 3 (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ ((𝐴(,)𝐵) ∖ {𝑌})))
574 dirkercncflem2.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
575574dirkerval2 46015 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ ℝ) → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
5765, 57, 575syl2anc 583 . . . 4 (𝜑 → ((𝐷𝑁)‘𝑌) = if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))))
577282iftrued 4556 . . . . 5 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
578 dirkercncflem2.l . . . . . . . . . . 11 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
579578a1i 11 . . . . . . . . . 10 (𝜑𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))))
580 iftrue 4554 . . . . . . . . . . . . . 14 (𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
581580adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = (((2 · 𝑁) + 1) / (2 · π)))
582154, 38mulcld 11310 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · 𝑁) ∈ ℂ)
583582, 397addcld 11309 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
584583, 154, 155, 377, 378divdiv1d 12101 . . . . . . . . . . . . . . . 16 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
585584eqcomd 2746 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
586582, 397, 154, 377divdird 12108 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
58738, 154, 377divcan3d 12075 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁) / 2) = 𝑁)
588587oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
589586, 588eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
590589oveq1d 7463 . . . . . . . . . . . . . . 15 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = ((𝑁 + (1 / 2)) / π))
591585, 590eqtrd 2780 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
592591ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((2 · 𝑁) + 1) / (2 · π)) = ((𝑁 + (1 / 2)) / π))
593310fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑌)))
594593oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))))
595 fvoveq1 7471 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑌 → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
596595oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑌 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑌 / 2))))
597594, 596oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑤 = 𝑌 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
598597adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))))
59938, 40, 263adddird 11315 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)))
600397, 154, 263, 377div32d 12093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 / 2) · 𝑌) = (1 · (𝑌 / 2)))
601436mullidd 11308 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · (𝑌 / 2)) = (𝑌 / 2))
602600, 601eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 / 2) · 𝑌) = (𝑌 / 2))
603602oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + ((1 / 2) · 𝑌)) = ((𝑁 · 𝑌) + (𝑌 / 2)))
60438, 263mulcld 11310 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 · 𝑌) ∈ ℂ)
605604, 436addcomd 11492 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) + (𝑌 / 2)) = ((𝑌 / 2) + (𝑁 · 𝑌)))
606599, 603, 6053eqtrd 2784 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 + (1 / 2)) · 𝑌) = ((𝑌 / 2) + (𝑁 · 𝑌)))
607606fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘((𝑌 / 2) + (𝑁 · 𝑌))))
608604, 156, 379divcan1d 12071 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝑁 · 𝑌) / (2 · π)) · (2 · π)) = (𝑁 · 𝑌))
609608eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · 𝑌) = (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))
610609oveq2d 7464 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) + (𝑁 · 𝑌)) = ((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π))))
611610fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (𝑁 · 𝑌))) = (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))))
61238, 263, 156, 379divassd 12105 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) = (𝑁 · (𝑌 / (2 · π))))
613405, 404zmulcld 12753 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑁 · (𝑌 / (2 · π))) ∈ ℤ)
614612, 613eqeltrd 2844 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ)
615 cosper 26542 . . . . . . . . . . . . . . . . . . . 20 (((𝑌 / 2) ∈ ℂ ∧ ((𝑁 · 𝑌) / (2 · π)) ∈ ℤ) → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
616436, 614, 615syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (cos‘((𝑌 / 2) + (((𝑁 · 𝑌) / (2 · π)) · (2 · π)))) = (cos‘(𝑌 / 2)))
617607, 611, 6163eqtrd 2784 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos‘((𝑁 + (1 / 2)) · 𝑌)) = (cos‘(𝑌 / 2)))
618617oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) = ((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))))
619618oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))))
620436coscld 16179 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ∈ ℂ)
621263, 154, 155, 377, 378divdiv1d 12101 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) = (𝑌 / (2 · π)))
622621, 404eqeltrd 2844 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) ∈ ℤ)
623622zred 12747 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑌 / 2) / π) ∈ ℝ)
624623, 272ltaddrpd 13132 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)))
625 halflt1 12511 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) < 1
626625a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 / 2) < 1)
627268, 267, 623, 626ltadd2dd 11449 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1))
628 btwnnz 12719 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌 / 2) / π) ∈ ℤ ∧ ((𝑌 / 2) / π) < (((𝑌 / 2) / π) + (1 / 2)) ∧ (((𝑌 / 2) / π) + (1 / 2)) < (((𝑌 / 2) / π) + 1)) → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
629622, 624, 627, 628syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ)
630 coseq0 45785 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 / 2) ∈ ℂ → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
631436, 630syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((cos‘(𝑌 / 2)) = 0 ↔ (((𝑌 / 2) / π) + (1 / 2)) ∈ ℤ))
632629, 631mtbird 325 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (cos‘(𝑌 / 2)) = 0)
633632neqned 2953 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos‘(𝑌 / 2)) ≠ 0)
63441, 155, 620, 378, 633divcan5rd 12097 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘(𝑌 / 2))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
635619, 634eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
636635ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑌))) / (π · (cos‘(𝑌 / 2)))) = ((𝑁 + (1 / 2)) / π))
637598, 636eqtr2d 2781 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) / π) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
638581, 592, 6373eqtrrd 2785 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
639 iffalse 4557 . . . . . . . . . . . . . 14 𝑤 = 𝑌 → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
640639adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))
641 eqidd 2741 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))))
642 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐻𝑦) = (𝐻𝑤))
643 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → (𝐼𝑦) = (𝐼𝑤))
644642, 643oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
645644adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝐻𝑦) / (𝐼𝑦)) = ((𝐻𝑤) / (𝐼𝑤)))
646106, 100fmptd 7148 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
647646ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
648647, 324ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) ∈ ℂ)
649567ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼:((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
650649, 324ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ∈ ℂ)
651111a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))))
652 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
653652fvoveq1d 7470 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
654653oveq2d 7464 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (π · (cos‘(𝑦 / 2))) = (π · (cos‘(𝑤 / 2))))
655119a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → π ∈ ℂ)
656327halfcld 12538 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴(,)𝐵) → (𝑤 / 2) ∈ ℂ)
657656coscld 16179 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴(,)𝐵) → (cos‘(𝑤 / 2)) ∈ ℂ)
658655, 657mulcld 11310 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴(,)𝐵) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
659658ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
660651, 654, 324, 659fvmptd 7036 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) = (π · (cos‘(𝑤 / 2))))
661537a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π ∈ ℂ ∧ π ≠ 0))
662657ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ∈ ℂ)
663 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝜑)
664 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (cos‘(𝑦 / 2)) = (cos‘(𝑤 / 2)))
665664neeq1d 3006 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → ((cos‘(𝑦 / 2)) ≠ 0 ↔ (cos‘(𝑤 / 2)) ≠ 0))
666226, 665imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ↔ ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)))
667666, 562chvarvv 1998 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑤 / 2)) ≠ 0)
668663, 324, 667syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
669 mulne0 11932 . . . . . . . . . . . . . . . . 17 (((π ∈ ℂ ∧ π ≠ 0) ∧ ((cos‘(𝑤 / 2)) ∈ ℂ ∧ (cos‘(𝑤 / 2)) ≠ 0)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
670661, 662, 668, 669syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (π · (cos‘(𝑤 / 2))) ≠ 0)
671660, 670eqnetrd 3014 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐼𝑤) ≠ 0)
672648, 650, 671divcld 12070 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) ∈ ℂ)
673641, 645, 324, 672fvmptd 7036 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤) = ((𝐻𝑤) / (𝐼𝑤)))
674100a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))))
675317fveq2d 6924 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → (cos‘((𝑁 + (1 / 2)) · 𝑦)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
676675oveq2d 7464 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
677329coscld 16179 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑁 + (1 / 2)) · 𝑤)) ∈ ℂ)
678325, 677mulcld 11310 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
679678adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ℂ)
680674, 676, 324, 679fvmptd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (𝐻𝑤) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))))
681680, 660oveq12d 7466 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → ((𝐻𝑤) / (𝐼𝑤)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))))
682640, 673, 6813eqtrrd 2785 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑤 = 𝑌) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
683638, 682pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2)))) = if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
684683mpteq2dva 5266 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
685579, 684eqtr2d 2781 . . . . . . . . 9 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = 𝐿)
686349, 41, 75constcncfg 45793 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
687 cosf 16173 . . . . . . . . . . . . . . . . . . 19 cos:ℂ⟶ℂ
688231, 44sylan2 592 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
689 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))
690688, 689fmptd 7148 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ)
691 fcompt 7167 . . . . . . . . . . . . . . . . . . 19 ((cos:ℂ⟶ℂ ∧ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)):(𝐴(,)𝐵)⟶ℂ) → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
692687, 690, 691sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))))
693 eqidd 2741 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)))
694316adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑤) → ((𝑁 + (1 / 2)) · 𝑦) = ((𝑁 + (1 / 2)) · 𝑤))
695 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 𝑤 ∈ (𝐴(,)𝐵))
696693, 694, 695, 329fvmptd 7036 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤) = ((𝑁 + (1 / 2)) · 𝑤))
697696fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑤)))
698697mpteq2dva 5266 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))))
699692, 698eqtr2d 2781 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) = (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))))
700349, 41, 75constcncfg 45793 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝑁 + (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
701349, 75idcncfg 45794 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝑦) ∈ ((𝐴(,)𝐵)–cn→ℂ))
702700, 701mulcncf 25499 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
703 coscn 26507 . . . . . . . . . . . . . . . . . . 19 cos ∈ (ℂ–cn→ℂ)
704703a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → cos ∈ (ℂ–cn→ℂ))
705702, 704cncfco 24952 . . . . . . . . . . . . . . . . 17 (𝜑 → (cos ∘ (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
706699, 705eqeltrd 2844 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘((𝑁 + (1 / 2)) · 𝑤))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
707686, 706mulcncf 25499 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
708 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2))))
709349, 155, 75constcncfg 45793 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→ℂ))
710 2cnd 12371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
711134a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
712328, 710, 711divrecd 12073 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 / 2) = (𝑤 · (1 / 2)))
713712mpteq2dva 5266 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) = (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))))
714 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) = (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2)))
715 cncfmptid 24958 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71674, 74, 715mp2an 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ)
717716a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (ℂ–cn→ℂ))
71874a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
719 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
720718, 719, 718constcncfg 45793 . . . . . . . . . . . . . . . . . . . . . 22 ((1 / 2) ∈ ℂ → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
72139, 720mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑤 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
722717, 721mulcncf 25499 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ℂ ↦ (𝑤 · (1 / 2))) ∈ (ℂ–cn→ℂ))
723712, 462eqeltrrd 2845 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (𝑤 · (1 / 2)) ∈ ℂ)
724714, 722, 349, 75, 723cncfmptssg 45792 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 · (1 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
725713, 724eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (𝑤 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
726704, 725cncfmpt1f 24959 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑤 / 2))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
727709, 726mulcncf 25499 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
728 ssid 4031 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
729728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
730 difssd 4160 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
731658adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ ℂ)
732119a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ∈ ℂ)
733657adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ∈ ℂ)
734238a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → π ≠ 0)
735595adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) = (cos‘(𝑌 / 2)))
736633adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 = 𝑌) → (cos‘(𝑌 / 2)) ≠ 0)
737735, 736eqnetrd 3014 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
738737adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝐴(,)𝐵)) ∧ 𝑤 = 𝑌) → (cos‘(𝑤 / 2)) ≠ 0)
739738, 668pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (cos‘(𝑤 / 2)) ≠ 0)
740732, 733, 734, 739mulne0d 11942 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ≠ 0)
741740neneqd 2951 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) = 0)
742 elsng 4662 . . . . . . . . . . . . . . . . . . 19 ((π · (cos‘(𝑤 / 2))) ∈ ℂ → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
743731, 742syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ((π · (cos‘(𝑤 / 2))) ∈ {0} ↔ (π · (cos‘(𝑤 / 2))) = 0))
744741, 743mtbird 325 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → ¬ (π · (cos‘(𝑤 / 2))) ∈ {0})
745731, 744eldifd 3987 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝐴(,)𝐵)) → (π · (cos‘(𝑤 / 2))) ∈ (ℂ ∖ {0}))
746708, 727, 729, 730, 745cncfmptssg 45792 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (π · (cos‘(𝑤 / 2)))) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
747707, 746divcncf 25501 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
748747, 487eleqtrd 2846 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
749579, 748eqeltrd 2844 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
750 cncnp 23309 . . . . . . . . . . . . 13 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
751355, 353, 750sylancl 585 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))))
752749, 751mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐿:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)))
753752simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
754360eleq2d 2830 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌)))
755754rspccva 3634 . . . . . . . . . 10 ((∀𝑦 ∈ (𝐴(,)𝐵)𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐴(,)𝐵)) → 𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
756753, 27, 755syl2anc 583 . . . . . . . . 9 (𝜑𝐿 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
757685, 756eqeltrd 2844 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑌))
758307mpteq1d 5261 . . . . . . . 8 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (𝐴(,)𝐵) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))))
759757, 758, 5003eltr4d 2859 . . . . . . 7 (𝜑 → (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌))
760 eqid 2740 . . . . . . . 8 (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) = (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤)))
761100fvmpt2 7040 . . . . . . . . . . . 12 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ℂ) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
762557, 106, 761syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐻𝑦) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
763762, 559oveq12d 7466 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) = (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))))
764106, 201, 563divcld 12070 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))) / (π · (cos‘(𝑦 / 2)))) ∈ ℂ)
765763, 764eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐻𝑦) / (𝐼𝑦)) ∈ ℂ)
766 eqid 2740 . . . . . . . . 9 (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))
767765, 766fmptd 7148 . . . . . . . 8 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))):((𝐴(,)𝐵) ∖ {𝑌})⟶ℂ)
768371, 51, 760, 767, 374, 263ellimc 25928 . . . . . . 7 (𝜑 → ((((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) ↔ (𝑤 ∈ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) ↦ if(𝑤 = 𝑌, (((2 · 𝑁) + 1) / (2 · π)), ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦)))‘𝑤))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) CnP (TopOpen‘ℂfld))‘𝑌)))
769759, 768mpbird 257 . . . . . 6 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌))
770103eqcomd 2746 . . . . . . . . . 10 (𝜑𝐻 = (ℝ D 𝐹))
771770fveq1d 6922 . . . . . . . . 9 (𝜑 → (𝐻𝑦) = ((ℝ D 𝐹)‘𝑦))
772199eqcomd 2746 . . . . . . . . . 10 (𝜑𝐼 = (ℝ D 𝐺))
773772fveq1d 6922 . . . . . . . . 9 (𝜑 → (𝐼𝑦) = ((ℝ D 𝐺)‘𝑦))
774771, 773oveq12d 7466 . . . . . . . 8 (𝜑 → ((𝐻𝑦) / (𝐼𝑦)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
775774mpteq2dv 5268 . . . . . . 7 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))))
776775oveq1d 7463 . . . . . 6 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐻𝑦) / (𝐼𝑦))) lim 𝑌) = ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
777769, 776eleqtrd 2846 . . . . 5 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
778577, 777eqeltrd 2844 . . . 4 (𝜑 → if((𝑌 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑌)) / ((2 · π) · (sin‘(𝑌 / 2))))) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
779576, 778eqeltrd 2844 . . 3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦))) lim 𝑌))
7804, 15, 24, 26, 27, 28, 110, 205, 431, 506, 556, 573, 779lhop 26075 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌))
781574dirkerval 46012 . . . . . 6 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
7825, 781syl 17 . . . . 5 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
783782reseq1d 6008 . . . 4 (𝜑 → ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
7844resmptd 6069 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
785256iffalsed 4559 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
78613recnd 11318 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
78714fvmpt2 7040 . . . . . . . 8 ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ∧ (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
788557, 786, 787syl2anc 583 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐹𝑦) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
789557, 503, 525syl2anc 583 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (𝐺𝑦) = ((2 · π) · (sin‘(𝑦 / 2))))
790788, 789oveq12d 7466 . . . . . 6 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → ((𝐹𝑦) / (𝐺𝑦)) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
791785, 790eqtr4d 2783 . . . . 5 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((𝐹𝑦) / (𝐺𝑦)))
792791mpteq2dva 5266 . . . 4 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))))
793783, 784, 7923eqtrrd 2785 . . 3 (𝜑 → (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) = ((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})))
794793oveq1d 7463 . 2 (𝜑 → ((𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝐹𝑦) / (𝐺𝑦))) lim 𝑌) = (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
795780, 794eleqtrd 2846 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cun 3974  wss 3976  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324   / cdiv 11947  cn 12293  2c2 12348  cz 12639  +crp 13057  (,)cioo 13407   mod cmo 13920  sincsin 16111  cosccos 16112  πcpi 16114  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  intcnt 23046   Cn ccn 23253   CnP ccnp 23254  Hauscha 23337  cnccncf 24921   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dirkercncflem3  46026
  Copyright terms: Public domain W3C validator