MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extmptsuppeq Structured version   Visualization version   GIF version

Theorem extmptsuppeq 7975
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
extmptsuppeq.b (𝜑𝐵𝑊)
extmptsuppeq.a (𝜑𝐴𝐵)
extmptsuppeq.z ((𝜑𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
Assertion
Ref Expression
extmptsuppeq (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑊(𝑛)   𝑋(𝑛)

Proof of Theorem extmptsuppeq
StepHypRef Expression
1 extmptsuppeq.a . . . . . . . . 9 (𝜑𝐴𝐵)
21adantl 481 . . . . . . . 8 ((𝑍 ∈ V ∧ 𝜑) → 𝐴𝐵)
32sseld 3916 . . . . . . 7 ((𝑍 ∈ V ∧ 𝜑) → (𝑛𝐴𝑛𝐵))
43anim1d 610 . . . . . 6 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋 ∈ (V ∖ {𝑍})) → (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))))
5 eldif 3893 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐵𝐴) ↔ (𝑛𝐵 ∧ ¬ 𝑛𝐴))
6 extmptsuppeq.z . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
76adantll 710 . . . . . . . . . . . . 13 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
85, 7sylan2br 594 . . . . . . . . . . . 12 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵 ∧ ¬ 𝑛𝐴)) → 𝑋 = 𝑍)
98expr 456 . . . . . . . . . . 11 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (¬ 𝑛𝐴𝑋 = 𝑍))
10 elsn2g 4596 . . . . . . . . . . . . 13 (𝑍 ∈ V → (𝑋 ∈ {𝑍} ↔ 𝑋 = 𝑍))
11 elndif 4059 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑍} → ¬ 𝑋 ∈ (V ∖ {𝑍}))
1210, 11syl6bir 253 . . . . . . . . . . . 12 (𝑍 ∈ V → (𝑋 = 𝑍 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
1312ad2antrr 722 . . . . . . . . . . 11 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (𝑋 = 𝑍 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
149, 13syld 47 . . . . . . . . . 10 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (¬ 𝑛𝐴 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
1514con4d 115 . . . . . . . . 9 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (𝑋 ∈ (V ∖ {𝑍}) → 𝑛𝐴))
1615impr 454 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → 𝑛𝐴)
17 simprr 769 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → 𝑋 ∈ (V ∖ {𝑍}))
1816, 17jca 511 . . . . . . 7 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → (𝑛𝐴𝑋 ∈ (V ∖ {𝑍})))
1918ex 412 . . . . . 6 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐵𝑋 ∈ (V ∖ {𝑍})) → (𝑛𝐴𝑋 ∈ (V ∖ {𝑍}))))
204, 19impbid 211 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋 ∈ (V ∖ {𝑍})) ↔ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))))
2120rabbidva2 3400 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {𝑛𝐴𝑋 ∈ (V ∖ {𝑍})} = {𝑛𝐵𝑋 ∈ (V ∖ {𝑍})})
22 eqid 2738 . . . . 5 (𝑛𝐴𝑋) = (𝑛𝐴𝑋)
23 extmptsuppeq.b . . . . . . 7 (𝜑𝐵𝑊)
2423, 1ssexd 5243 . . . . . 6 (𝜑𝐴 ∈ V)
2524adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ V)
26 simpl 482 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
2722, 25, 26mptsuppdifd 7973 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋) supp 𝑍) = {𝑛𝐴𝑋 ∈ (V ∖ {𝑍})})
28 eqid 2738 . . . . 5 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
2923adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐵𝑊)
3028, 29, 26mptsuppdifd 7973 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐵𝑋) supp 𝑍) = {𝑛𝐵𝑋 ∈ (V ∖ {𝑍})})
3121, 27, 303eqtr4d 2788 . . 3 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
3231ex 412 . 2 (𝑍 ∈ V → (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍)))
33 simpr 484 . . . . 5 (((𝑛𝐴𝑋) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
34 supp0prc 7951 . . . . 5 (¬ ((𝑛𝐴𝑋) ∈ V ∧ 𝑍 ∈ V) → ((𝑛𝐴𝑋) supp 𝑍) = ∅)
3533, 34nsyl5 159 . . . 4 𝑍 ∈ V → ((𝑛𝐴𝑋) supp 𝑍) = ∅)
36 simpr 484 . . . . 5 (((𝑛𝐵𝑋) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
37 supp0prc 7951 . . . . 5 (¬ ((𝑛𝐵𝑋) ∈ V ∧ 𝑍 ∈ V) → ((𝑛𝐵𝑋) supp 𝑍) = ∅)
3836, 37nsyl5 159 . . . 4 𝑍 ∈ V → ((𝑛𝐵𝑋) supp 𝑍) = ∅)
3935, 38eqtr4d 2781 . . 3 𝑍 ∈ V → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
4039a1d 25 . 2 𝑍 ∈ V → (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍)))
4132, 40pm2.61i 182 1 (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558  cmpt 5153  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  cantnfrescl  9364  cantnfres  9365
  Copyright terms: Public domain W3C validator