MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extmptsuppeq Structured version   Visualization version   GIF version

Theorem extmptsuppeq 7837
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
extmptsuppeq.b (𝜑𝐵𝑊)
extmptsuppeq.a (𝜑𝐴𝐵)
extmptsuppeq.z ((𝜑𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
Assertion
Ref Expression
extmptsuppeq (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑊(𝑛)   𝑋(𝑛)

Proof of Theorem extmptsuppeq
StepHypRef Expression
1 extmptsuppeq.a . . . . . . . . 9 (𝜑𝐴𝐵)
21adantl 485 . . . . . . . 8 ((𝑍 ∈ V ∧ 𝜑) → 𝐴𝐵)
32sseld 3914 . . . . . . 7 ((𝑍 ∈ V ∧ 𝜑) → (𝑛𝐴𝑛𝐵))
43anim1d 613 . . . . . 6 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋 ∈ (V ∖ {𝑍})) → (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))))
5 eldif 3891 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐵𝐴) ↔ (𝑛𝐵 ∧ ¬ 𝑛𝐴))
6 extmptsuppeq.z . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
76adantll 713 . . . . . . . . . . . . 13 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛 ∈ (𝐵𝐴)) → 𝑋 = 𝑍)
85, 7sylan2br 597 . . . . . . . . . . . 12 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵 ∧ ¬ 𝑛𝐴)) → 𝑋 = 𝑍)
98expr 460 . . . . . . . . . . 11 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (¬ 𝑛𝐴𝑋 = 𝑍))
10 elsn2g 4563 . . . . . . . . . . . . 13 (𝑍 ∈ V → (𝑋 ∈ {𝑍} ↔ 𝑋 = 𝑍))
11 elndif 4056 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑍} → ¬ 𝑋 ∈ (V ∖ {𝑍}))
1210, 11syl6bir 257 . . . . . . . . . . . 12 (𝑍 ∈ V → (𝑋 = 𝑍 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
1312ad2antrr 725 . . . . . . . . . . 11 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (𝑋 = 𝑍 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
149, 13syld 47 . . . . . . . . . 10 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (¬ 𝑛𝐴 → ¬ 𝑋 ∈ (V ∖ {𝑍})))
1514con4d 115 . . . . . . . . 9 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑛𝐵) → (𝑋 ∈ (V ∖ {𝑍}) → 𝑛𝐴))
1615impr 458 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → 𝑛𝐴)
17 simprr 772 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → 𝑋 ∈ (V ∖ {𝑍}))
1816, 17jca 515 . . . . . . 7 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))) → (𝑛𝐴𝑋 ∈ (V ∖ {𝑍})))
1918ex 416 . . . . . 6 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐵𝑋 ∈ (V ∖ {𝑍})) → (𝑛𝐴𝑋 ∈ (V ∖ {𝑍}))))
204, 19impbid 215 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋 ∈ (V ∖ {𝑍})) ↔ (𝑛𝐵𝑋 ∈ (V ∖ {𝑍}))))
2120rabbidva2 3423 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {𝑛𝐴𝑋 ∈ (V ∖ {𝑍})} = {𝑛𝐵𝑋 ∈ (V ∖ {𝑍})})
22 eqid 2798 . . . . 5 (𝑛𝐴𝑋) = (𝑛𝐴𝑋)
23 extmptsuppeq.b . . . . . . 7 (𝜑𝐵𝑊)
2423, 1ssexd 5192 . . . . . 6 (𝜑𝐴 ∈ V)
2524adantl 485 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ V)
26 simpl 486 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
2722, 25, 26mptsuppdifd 7835 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋) supp 𝑍) = {𝑛𝐴𝑋 ∈ (V ∖ {𝑍})})
28 eqid 2798 . . . . 5 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
2923adantl 485 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐵𝑊)
3028, 29, 26mptsuppdifd 7835 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐵𝑋) supp 𝑍) = {𝑛𝐵𝑋 ∈ (V ∖ {𝑍})})
3121, 27, 303eqtr4d 2843 . . 3 ((𝑍 ∈ V ∧ 𝜑) → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
3231ex 416 . 2 (𝑍 ∈ V → (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍)))
33 simpr 488 . . . . 5 (((𝑛𝐴𝑋) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
34 supp0prc 7816 . . . . 5 (¬ ((𝑛𝐴𝑋) ∈ V ∧ 𝑍 ∈ V) → ((𝑛𝐴𝑋) supp 𝑍) = ∅)
3533, 34nsyl5 162 . . . 4 𝑍 ∈ V → ((𝑛𝐴𝑋) supp 𝑍) = ∅)
36 simpr 488 . . . . 5 (((𝑛𝐵𝑋) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
37 supp0prc 7816 . . . . 5 (¬ ((𝑛𝐵𝑋) ∈ V ∧ 𝑍 ∈ V) → ((𝑛𝐵𝑋) supp 𝑍) = ∅)
3836, 37nsyl5 162 . . . 4 𝑍 ∈ V → ((𝑛𝐵𝑋) supp 𝑍) = ∅)
3935, 38eqtr4d 2836 . . 3 𝑍 ∈ V → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
4039a1d 25 . 2 𝑍 ∈ V → (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍)))
4132, 40pm2.61i 185 1 (𝜑 → ((𝑛𝐴𝑋) supp 𝑍) = ((𝑛𝐵𝑋) supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  c0 4243  {csn 4525  cmpt 5110  (class class class)co 7135   supp csupp 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-supp 7814
This theorem is referenced by:  cantnfrescl  9123  cantnfres  9124
  Copyright terms: Public domain W3C validator