| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcco | Structured version Visualization version GIF version | ||
| Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcco.r | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) |
| limcco.s | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
| limcco.c | ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) |
| limcco.d | ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) |
| limcco.1 | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| limcco.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) |
| Ref | Expression |
|---|---|
| limcco | ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcco.r | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) | |
| 2 | 1 | expr 456 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵)) |
| 3 | 2 | necon1bd 2950 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶)) |
| 4 | limccl 25826 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) ⊆ ℂ | |
| 5 | limcco.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) | |
| 6 | 4, 5 | sselid 3956 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 8 | elsn2g 4640 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) |
| 10 | 3, 9 | sylibrd 259 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ {𝐶})) |
| 11 | 10 | orrd 863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) |
| 12 | elun 4128 | . . . . 5 ⊢ (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) | |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶})) |
| 14 | 13 | fmpttd 7104 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶(𝐵 ∪ {𝐶})) |
| 15 | eqid 2735 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) | |
| 16 | limcco.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | |
| 17 | 15, 16 | dmmptd 6682 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) = 𝐵) |
| 18 | limcco.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) | |
| 19 | limcrcl 25825 | . . . . . . 7 ⊢ (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
| 21 | 20 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ) |
| 22 | 17, 21 | eqsstrrd 3994 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 23 | 6 | snssd 4785 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ ℂ) |
| 24 | 22, 23 | unssd 4167 | . . 3 ⊢ (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ) |
| 25 | eqid 2735 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 26 | eqid 2735 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) | |
| 27 | 22, 6, 16, 26, 25 | limcmpt 25834 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))) |
| 28 | 18, 27 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)) |
| 29 | 14, 24, 25, 26, 5, 28 | limccnp 25842 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋)) |
| 30 | eqid 2735 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) | |
| 31 | iftrue 4506 | . . 3 ⊢ (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷) | |
| 32 | ssun2 4154 | . . . 4 ⊢ {𝐶} ⊆ (𝐵 ∪ {𝐶}) | |
| 33 | snssg 4759 | . . . . 5 ⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) | |
| 34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) |
| 35 | 32, 34 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵 ∪ {𝐶})) |
| 36 | 30, 31, 35, 18 | fvmptd3 7008 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷) |
| 37 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 38 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))) | |
| 39 | eqeq1 2739 | . . . . . 6 ⊢ (𝑦 = 𝑅 → (𝑦 = 𝐶 ↔ 𝑅 = 𝐶)) | |
| 40 | limcco.1 | . . . . . 6 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
| 41 | 39, 40 | ifbieq2d 4527 | . . . . 5 ⊢ (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 42 | 13, 37, 38, 41 | fmptco 7118 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇))) |
| 43 | limcco.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) | |
| 44 | 43 | anassrs 467 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷) |
| 45 | 44 | ifeq1da 4532 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 46 | ifid 4541 | . . . . . 6 ⊢ if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇 | |
| 47 | 45, 46 | eqtr3di 2785 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇) |
| 48 | 47 | mpteq2dva 5214 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 49 | 42, 48 | eqtrd 2770 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 50 | 49 | oveq1d 7418 | . 2 ⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| 51 | 29, 36, 50 | 3eltr3d 2848 | 1 ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∪ cun 3924 ⊆ wss 3926 ifcif 4500 {csn 4601 ↦ cmpt 5201 dom cdm 5654 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ↾t crest 17432 TopOpenctopn 17433 ℂfldccnfld 21313 CnP ccnp 23161 limℂ climc 25813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9421 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-rest 17434 df-topn 17435 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cnp 23164 df-xms 24257 df-ms 24258 df-limc 25817 |
| This theorem is referenced by: dvcobr 25899 dvcobrOLD 25900 dvcnvlem 25930 lhop2 25970 fourierdlem60 46143 fourierdlem61 46144 fourierdlem62 46145 fourierdlem73 46156 fourierdlem76 46159 |
| Copyright terms: Public domain | W3C validator |