MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcco Structured version   Visualization version   GIF version

Theorem limcco 25057
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
limcco.r ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
limcco.s ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
limcco.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
limcco.d (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
limcco.2 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
Assertion
Ref Expression
limcco (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem limcco
StepHypRef Expression
1 limcco.r . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
21expr 457 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑅𝐶𝑅𝐵))
32necon1bd 2961 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 = 𝐶))
4 limccl 25039 . . . . . . . . . 10 ((𝑥𝐴𝑅) lim 𝑋) ⊆ ℂ
5 limcco.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
64, 5sselid 3919 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
76adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 elsn2g 4599 . . . . . . . 8 (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
97, 8syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
103, 9sylibrd 258 . . . . . 6 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 ∈ {𝐶}))
1110orrd 860 . . . . 5 ((𝜑𝑥𝐴) → (𝑅𝐵𝑅 ∈ {𝐶}))
12 elun 4083 . . . . 5 (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅𝐵𝑅 ∈ {𝐶}))
1311, 12sylibr 233 . . . 4 ((𝜑𝑥𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶}))
1413fmpttd 6989 . . 3 (𝜑 → (𝑥𝐴𝑅):𝐴⟶(𝐵 ∪ {𝐶}))
15 eqid 2738 . . . . . 6 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
16 limcco.s . . . . . 6 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
1715, 16dmmptd 6578 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) = 𝐵)
18 limcco.d . . . . . . 7 (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
19 limcrcl 25038 . . . . . . 7 (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2120simp2d 1142 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) ⊆ ℂ)
2217, 21eqsstrrd 3960 . . . 4 (𝜑𝐵 ⊆ ℂ)
236snssd 4742 . . . 4 (𝜑 → {𝐶} ⊆ ℂ)
2422, 23unssd 4120 . . 3 (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ)
25 eqid 2738 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 eqid 2738 . . 3 ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶}))
2722, 6, 16, 26, 25limcmpt 25047 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)))
2818, 27mpbid 231 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))
2914, 24, 25, 26, 5, 28limccnp 25055 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋))
30 eqid 2738 . . 3 (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))
31 iftrue 4465 . . 3 (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷)
32 ssun2 4107 . . . 4 {𝐶} ⊆ (𝐵 ∪ {𝐶})
33 snssg 4718 . . . . 5 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
345, 33syl 17 . . . 4 (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
3532, 34mpbiri 257 . . 3 (𝜑𝐶 ∈ (𝐵 ∪ {𝐶}))
3630, 31, 35, 18fvmptd3 6898 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
37 eqidd 2739 . . . . 5 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
38 eqidd 2739 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)))
39 eqeq1 2742 . . . . . 6 (𝑦 = 𝑅 → (𝑦 = 𝐶𝑅 = 𝐶))
40 limcco.1 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
4139, 40ifbieq2d 4485 . . . . 5 (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4213, 37, 38, 41fmptco 7001 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)))
43 limcco.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
4443anassrs 468 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷)
4544ifeq1da 4490 . . . . . 6 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇))
46 ifid 4499 . . . . . 6 if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇
4745, 46eqtr3di 2793 . . . . 5 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇)
4847mpteq2dva 5174 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥𝐴𝑇))
4942, 48eqtrd 2778 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
5049oveq1d 7290 . 2 (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋) = ((𝑥𝐴𝑇) lim 𝑋))
5129, 36, 503eltr3d 2853 1 (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cun 3885  wss 3887  ifcif 4459  {csn 4561  cmpt 5157  dom cdm 5589  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   CnP ccnp 22376   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  dvcobr  25110  dvcnvlem  25140  lhop2  25179  fourierdlem60  43707  fourierdlem61  43708  fourierdlem62  43709  fourierdlem73  43720  fourierdlem76  43723
  Copyright terms: Public domain W3C validator