MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcco Structured version   Visualization version   GIF version

Theorem limcco 25794
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
limcco.r ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
limcco.s ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
limcco.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
limcco.d (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
limcco.2 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
Assertion
Ref Expression
limcco (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem limcco
StepHypRef Expression
1 limcco.r . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
21expr 456 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑅𝐶𝑅𝐵))
32necon1bd 2943 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 = 𝐶))
4 limccl 25776 . . . . . . . . . 10 ((𝑥𝐴𝑅) lim 𝑋) ⊆ ℂ
5 limcco.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
64, 5sselid 3944 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
76adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 elsn2g 4628 . . . . . . . 8 (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
97, 8syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
103, 9sylibrd 259 . . . . . 6 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 ∈ {𝐶}))
1110orrd 863 . . . . 5 ((𝜑𝑥𝐴) → (𝑅𝐵𝑅 ∈ {𝐶}))
12 elun 4116 . . . . 5 (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅𝐵𝑅 ∈ {𝐶}))
1311, 12sylibr 234 . . . 4 ((𝜑𝑥𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶}))
1413fmpttd 7087 . . 3 (𝜑 → (𝑥𝐴𝑅):𝐴⟶(𝐵 ∪ {𝐶}))
15 eqid 2729 . . . . . 6 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
16 limcco.s . . . . . 6 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
1715, 16dmmptd 6663 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) = 𝐵)
18 limcco.d . . . . . . 7 (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
19 limcrcl 25775 . . . . . . 7 (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2120simp2d 1143 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) ⊆ ℂ)
2217, 21eqsstrrd 3982 . . . 4 (𝜑𝐵 ⊆ ℂ)
236snssd 4773 . . . 4 (𝜑 → {𝐶} ⊆ ℂ)
2422, 23unssd 4155 . . 3 (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ)
25 eqid 2729 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 eqid 2729 . . 3 ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶}))
2722, 6, 16, 26, 25limcmpt 25784 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)))
2818, 27mpbid 232 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))
2914, 24, 25, 26, 5, 28limccnp 25792 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋))
30 eqid 2729 . . 3 (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))
31 iftrue 4494 . . 3 (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷)
32 ssun2 4142 . . . 4 {𝐶} ⊆ (𝐵 ∪ {𝐶})
33 snssg 4747 . . . . 5 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
345, 33syl 17 . . . 4 (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
3532, 34mpbiri 258 . . 3 (𝜑𝐶 ∈ (𝐵 ∪ {𝐶}))
3630, 31, 35, 18fvmptd3 6991 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
37 eqidd 2730 . . . . 5 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
38 eqidd 2730 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)))
39 eqeq1 2733 . . . . . 6 (𝑦 = 𝑅 → (𝑦 = 𝐶𝑅 = 𝐶))
40 limcco.1 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
4139, 40ifbieq2d 4515 . . . . 5 (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4213, 37, 38, 41fmptco 7101 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)))
43 limcco.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
4443anassrs 467 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷)
4544ifeq1da 4520 . . . . . 6 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇))
46 ifid 4529 . . . . . 6 if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇
4745, 46eqtr3di 2779 . . . . 5 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇)
4847mpteq2dva 5200 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥𝐴𝑇))
4942, 48eqtrd 2764 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
5049oveq1d 7402 . 2 (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋) = ((𝑥𝐴𝑇) lim 𝑋))
5129, 36, 503eltr3d 2842 1 (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cun 3912  wss 3914  ifcif 4488  {csn 4589  cmpt 5188  dom cdm 5638  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  t crest 17383  TopOpenctopn 17384  fldccnfld 21264   CnP ccnp 23112   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cnp 23115  df-xms 24208  df-ms 24209  df-limc 25767
This theorem is referenced by:  dvcobr  25849  dvcobrOLD  25850  dvcnvlem  25880  lhop2  25920  fourierdlem60  46164  fourierdlem61  46165  fourierdlem62  46166  fourierdlem73  46177  fourierdlem76  46180
  Copyright terms: Public domain W3C validator