MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcco Structured version   Visualization version   GIF version

Theorem limcco 24491
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
limcco.r ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
limcco.s ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
limcco.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
limcco.d (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
limcco.2 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
Assertion
Ref Expression
limcco (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem limcco
StepHypRef Expression
1 limcco.r . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
21expr 459 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑅𝐶𝑅𝐵))
32necon1bd 3034 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 = 𝐶))
4 limccl 24473 . . . . . . . . . 10 ((𝑥𝐴𝑅) lim 𝑋) ⊆ ℂ
5 limcco.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
64, 5sseldi 3965 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
76adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 elsn2g 4603 . . . . . . . 8 (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
97, 8syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
103, 9sylibrd 261 . . . . . 6 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 ∈ {𝐶}))
1110orrd 859 . . . . 5 ((𝜑𝑥𝐴) → (𝑅𝐵𝑅 ∈ {𝐶}))
12 elun 4125 . . . . 5 (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅𝐵𝑅 ∈ {𝐶}))
1311, 12sylibr 236 . . . 4 ((𝜑𝑥𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶}))
1413fmpttd 6879 . . 3 (𝜑 → (𝑥𝐴𝑅):𝐴⟶(𝐵 ∪ {𝐶}))
15 eqid 2821 . . . . . 6 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
16 limcco.s . . . . . 6 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
1715, 16dmmptd 6493 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) = 𝐵)
18 limcco.d . . . . . . 7 (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
19 limcrcl 24472 . . . . . . 7 (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2120simp2d 1139 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) ⊆ ℂ)
2217, 21eqsstrrd 4006 . . . 4 (𝜑𝐵 ⊆ ℂ)
236snssd 4742 . . . 4 (𝜑 → {𝐶} ⊆ ℂ)
2422, 23unssd 4162 . . 3 (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ)
25 eqid 2821 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 eqid 2821 . . 3 ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶}))
2722, 6, 16, 26, 25limcmpt 24481 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)))
2818, 27mpbid 234 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))
2914, 24, 25, 26, 5, 28limccnp 24489 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋))
30 eqid 2821 . . 3 (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))
31 iftrue 4473 . . 3 (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷)
32 ssun2 4149 . . . 4 {𝐶} ⊆ (𝐵 ∪ {𝐶})
33 snssg 4717 . . . . 5 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
345, 33syl 17 . . . 4 (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
3532, 34mpbiri 260 . . 3 (𝜑𝐶 ∈ (𝐵 ∪ {𝐶}))
3630, 31, 35, 18fvmptd3 6791 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
37 eqidd 2822 . . . . 5 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
38 eqidd 2822 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)))
39 eqeq1 2825 . . . . . 6 (𝑦 = 𝑅 → (𝑦 = 𝐶𝑅 = 𝐶))
40 limcco.1 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
4139, 40ifbieq2d 4492 . . . . 5 (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4213, 37, 38, 41fmptco 6891 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)))
43 ifid 4506 . . . . . 6 if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇
44 limcco.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
4544anassrs 470 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷)
4645ifeq1da 4497 . . . . . 6 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4743, 46syl5reqr 2871 . . . . 5 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇)
4847mpteq2dva 5161 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥𝐴𝑇))
4942, 48eqtrd 2856 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
5049oveq1d 7171 . 2 (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋) = ((𝑥𝐴𝑇) lim 𝑋))
5129, 36, 503eltr3d 2927 1 (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cun 3934  wss 3936  ifcif 4467  {csn 4567  cmpt 5146  dom cdm 5555  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  t crest 16694  TopOpenctopn 16695  fldccnfld 20545   CnP ccnp 21833   lim climc 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cnp 21836  df-xms 22930  df-ms 22931  df-limc 24464
This theorem is referenced by:  dvcobr  24543  dvcnvlem  24573  lhop2  24612  fourierdlem60  42471  fourierdlem61  42472  fourierdlem62  42473  fourierdlem73  42484  fourierdlem76  42487
  Copyright terms: Public domain W3C validator