| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcco | Structured version Visualization version GIF version | ||
| Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcco.r | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) |
| limcco.s | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
| limcco.c | ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) |
| limcco.d | ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) |
| limcco.1 | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| limcco.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) |
| Ref | Expression |
|---|---|
| limcco | ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcco.r | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) | |
| 2 | 1 | expr 456 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵)) |
| 3 | 2 | necon1bd 2943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶)) |
| 4 | limccl 25776 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) ⊆ ℂ | |
| 5 | limcco.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) | |
| 6 | 4, 5 | sselid 3944 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 8 | elsn2g 4628 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) |
| 10 | 3, 9 | sylibrd 259 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ {𝐶})) |
| 11 | 10 | orrd 863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) |
| 12 | elun 4116 | . . . . 5 ⊢ (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) | |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶})) |
| 14 | 13 | fmpttd 7087 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶(𝐵 ∪ {𝐶})) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) | |
| 16 | limcco.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | |
| 17 | 15, 16 | dmmptd 6663 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) = 𝐵) |
| 18 | limcco.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) | |
| 19 | limcrcl 25775 | . . . . . . 7 ⊢ (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
| 21 | 20 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ) |
| 22 | 17, 21 | eqsstrrd 3982 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 23 | 6 | snssd 4773 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ ℂ) |
| 24 | 22, 23 | unssd 4155 | . . 3 ⊢ (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ) |
| 25 | eqid 2729 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 26 | eqid 2729 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) | |
| 27 | 22, 6, 16, 26, 25 | limcmpt 25784 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))) |
| 28 | 18, 27 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)) |
| 29 | 14, 24, 25, 26, 5, 28 | limccnp 25792 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋)) |
| 30 | eqid 2729 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) | |
| 31 | iftrue 4494 | . . 3 ⊢ (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷) | |
| 32 | ssun2 4142 | . . . 4 ⊢ {𝐶} ⊆ (𝐵 ∪ {𝐶}) | |
| 33 | snssg 4747 | . . . . 5 ⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) | |
| 34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) |
| 35 | 32, 34 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵 ∪ {𝐶})) |
| 36 | 30, 31, 35, 18 | fvmptd3 6991 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷) |
| 37 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 38 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))) | |
| 39 | eqeq1 2733 | . . . . . 6 ⊢ (𝑦 = 𝑅 → (𝑦 = 𝐶 ↔ 𝑅 = 𝐶)) | |
| 40 | limcco.1 | . . . . . 6 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
| 41 | 39, 40 | ifbieq2d 4515 | . . . . 5 ⊢ (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 42 | 13, 37, 38, 41 | fmptco 7101 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇))) |
| 43 | limcco.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) | |
| 44 | 43 | anassrs 467 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷) |
| 45 | 44 | ifeq1da 4520 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 46 | ifid 4529 | . . . . . 6 ⊢ if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇 | |
| 47 | 45, 46 | eqtr3di 2779 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇) |
| 48 | 47 | mpteq2dva 5200 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 49 | 42, 48 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 50 | 49 | oveq1d 7402 | . 2 ⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| 51 | 29, 36, 50 | 3eltr3d 2842 | 1 ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3912 ⊆ wss 3914 ifcif 4488 {csn 4589 ↦ cmpt 5188 dom cdm 5638 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ↾t crest 17383 TopOpenctopn 17384 ℂfldccnfld 21264 CnP ccnp 23112 limℂ climc 25763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cnp 23115 df-xms 24208 df-ms 24209 df-limc 25767 |
| This theorem is referenced by: dvcobr 25849 dvcobrOLD 25850 dvcnvlem 25880 lhop2 25920 fourierdlem60 46164 fourierdlem61 46165 fourierdlem62 46166 fourierdlem73 46177 fourierdlem76 46180 |
| Copyright terms: Public domain | W3C validator |