| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcco | Structured version Visualization version GIF version | ||
| Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcco.r | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) |
| limcco.s | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
| limcco.c | ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) |
| limcco.d | ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) |
| limcco.1 | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
| limcco.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) |
| Ref | Expression |
|---|---|
| limcco | ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcco.r | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) | |
| 2 | 1 | expr 456 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵)) |
| 3 | 2 | necon1bd 2944 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶)) |
| 4 | limccl 25783 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) ⊆ ℂ | |
| 5 | limcco.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) | |
| 6 | 4, 5 | sselid 3947 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 8 | elsn2g 4631 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) |
| 10 | 3, 9 | sylibrd 259 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ {𝐶})) |
| 11 | 10 | orrd 863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) |
| 12 | elun 4119 | . . . . 5 ⊢ (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) | |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶})) |
| 14 | 13 | fmpttd 7090 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶(𝐵 ∪ {𝐶})) |
| 15 | eqid 2730 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) | |
| 16 | limcco.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | |
| 17 | 15, 16 | dmmptd 6666 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) = 𝐵) |
| 18 | limcco.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) | |
| 19 | limcrcl 25782 | . . . . . . 7 ⊢ (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
| 21 | 20 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ) |
| 22 | 17, 21 | eqsstrrd 3985 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 23 | 6 | snssd 4776 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ ℂ) |
| 24 | 22, 23 | unssd 4158 | . . 3 ⊢ (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ) |
| 25 | eqid 2730 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 26 | eqid 2730 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) | |
| 27 | 22, 6, 16, 26, 25 | limcmpt 25791 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))) |
| 28 | 18, 27 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)) |
| 29 | 14, 24, 25, 26, 5, 28 | limccnp 25799 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋)) |
| 30 | eqid 2730 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) | |
| 31 | iftrue 4497 | . . 3 ⊢ (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷) | |
| 32 | ssun2 4145 | . . . 4 ⊢ {𝐶} ⊆ (𝐵 ∪ {𝐶}) | |
| 33 | snssg 4750 | . . . . 5 ⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) | |
| 34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) |
| 35 | 32, 34 | mpbiri 258 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵 ∪ {𝐶})) |
| 36 | 30, 31, 35, 18 | fvmptd3 6994 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷) |
| 37 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 38 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))) | |
| 39 | eqeq1 2734 | . . . . . 6 ⊢ (𝑦 = 𝑅 → (𝑦 = 𝐶 ↔ 𝑅 = 𝐶)) | |
| 40 | limcco.1 | . . . . . 6 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
| 41 | 39, 40 | ifbieq2d 4518 | . . . . 5 ⊢ (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 42 | 13, 37, 38, 41 | fmptco 7104 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇))) |
| 43 | limcco.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) | |
| 44 | 43 | anassrs 467 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷) |
| 45 | 44 | ifeq1da 4523 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
| 46 | ifid 4532 | . . . . . 6 ⊢ if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇 | |
| 47 | 45, 46 | eqtr3di 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇) |
| 48 | 47 | mpteq2dva 5203 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 49 | 42, 48 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
| 50 | 49 | oveq1d 7405 | . 2 ⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| 51 | 29, 36, 50 | 3eltr3d 2843 | 1 ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∪ cun 3915 ⊆ wss 3917 ifcif 4491 {csn 4592 ↦ cmpt 5191 dom cdm 5641 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 CnP ccnp 23119 limℂ climc 25770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cnp 23122 df-xms 24215 df-ms 24216 df-limc 25774 |
| This theorem is referenced by: dvcobr 25856 dvcobrOLD 25857 dvcnvlem 25887 lhop2 25927 fourierdlem60 46171 fourierdlem61 46172 fourierdlem62 46173 fourierdlem73 46184 fourierdlem76 46187 |
| Copyright terms: Public domain | W3C validator |