![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcco | Structured version Visualization version GIF version |
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
limcco.r | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) |
limcco.s | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
limcco.c | ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) |
limcco.d | ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) |
limcco.1 | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
limcco.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) |
Ref | Expression |
---|---|
limcco | ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcco.r | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) | |
2 | 1 | expr 457 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵)) |
3 | 2 | necon1bd 2961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶)) |
4 | limccl 25239 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) ⊆ ℂ | |
5 | limcco.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) | |
6 | 4, 5 | sselid 3942 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
8 | elsn2g 4624 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) |
10 | 3, 9 | sylibrd 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ {𝐶})) |
11 | 10 | orrd 861 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) |
12 | elun 4108 | . . . . 5 ⊢ (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶})) |
14 | 13 | fmpttd 7063 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶(𝐵 ∪ {𝐶})) |
15 | eqid 2736 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) | |
16 | limcco.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | |
17 | 15, 16 | dmmptd 6646 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) = 𝐵) |
18 | limcco.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) | |
19 | limcrcl 25238 | . . . . . . 7 ⊢ (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
21 | 20 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ) |
22 | 17, 21 | eqsstrrd 3983 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
23 | 6 | snssd 4769 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ ℂ) |
24 | 22, 23 | unssd 4146 | . . 3 ⊢ (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ) |
25 | eqid 2736 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
26 | eqid 2736 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) | |
27 | 22, 6, 16, 26, 25 | limcmpt 25247 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))) |
28 | 18, 27 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)) |
29 | 14, 24, 25, 26, 5, 28 | limccnp 25255 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋)) |
30 | eqid 2736 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) | |
31 | iftrue 4492 | . . 3 ⊢ (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷) | |
32 | ssun2 4133 | . . . 4 ⊢ {𝐶} ⊆ (𝐵 ∪ {𝐶}) | |
33 | snssg 4744 | . . . . 5 ⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) | |
34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) |
35 | 32, 34 | mpbiri 257 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵 ∪ {𝐶})) |
36 | 30, 31, 35, 18 | fvmptd3 6971 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷) |
37 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
38 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))) | |
39 | eqeq1 2740 | . . . . . 6 ⊢ (𝑦 = 𝑅 → (𝑦 = 𝐶 ↔ 𝑅 = 𝐶)) | |
40 | limcco.1 | . . . . . 6 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
41 | 39, 40 | ifbieq2d 4512 | . . . . 5 ⊢ (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
42 | 13, 37, 38, 41 | fmptco 7075 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇))) |
43 | limcco.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) | |
44 | 43 | anassrs 468 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷) |
45 | 44 | ifeq1da 4517 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
46 | ifid 4526 | . . . . . 6 ⊢ if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇 | |
47 | 45, 46 | eqtr3di 2791 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇) |
48 | 47 | mpteq2dva 5205 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
49 | 42, 48 | eqtrd 2776 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
50 | 49 | oveq1d 7372 | . 2 ⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
51 | 29, 36, 50 | 3eltr3d 2852 | 1 ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3908 ⊆ wss 3910 ifcif 4486 {csn 4586 ↦ cmpt 5188 dom cdm 5633 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ↾t crest 17302 TopOpenctopn 17303 ℂfldccnfld 20796 CnP ccnp 22576 limℂ climc 25226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fi 9347 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-fz 13425 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-starv 17148 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-rest 17304 df-topn 17305 df-topgen 17325 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cnp 22579 df-xms 23673 df-ms 23674 df-limc 25230 |
This theorem is referenced by: dvcobr 25310 dvcnvlem 25340 lhop2 25379 fourierdlem60 44397 fourierdlem61 44398 fourierdlem62 44399 fourierdlem73 44410 fourierdlem76 44413 |
Copyright terms: Public domain | W3C validator |