Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcco | Structured version Visualization version GIF version |
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
limcco.r | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) |
limcco.s | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) |
limcco.c | ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) |
limcco.d | ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) |
limcco.1 | ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
limcco.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) |
Ref | Expression |
---|---|
limcco | ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcco.r | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶)) → 𝑅 ∈ 𝐵) | |
2 | 1 | expr 457 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵)) |
3 | 2 | necon1bd 2961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶)) |
4 | limccl 25039 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) ⊆ ℂ | |
5 | limcco.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋)) | |
6 | 4, 5 | sselid 3919 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
8 | elsn2g 4599 | . . . . . . . 8 ⊢ (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶)) |
10 | 3, 9 | sylibrd 258 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ {𝐶})) |
11 | 10 | orrd 860 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) |
12 | elun 4083 | . . . . 5 ⊢ (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅 ∈ 𝐵 ∨ 𝑅 ∈ {𝐶})) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶})) |
14 | 13 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅):𝐴⟶(𝐵 ∪ {𝐶})) |
15 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑦 ∈ 𝐵 ↦ 𝑆) | |
16 | limcco.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) | |
17 | 15, 16 | dmmptd 6578 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) = 𝐵) |
18 | limcco.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶)) | |
19 | limcrcl 25038 | . . . . . . 7 ⊢ (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆):dom (𝑦 ∈ 𝐵 ↦ 𝑆)⟶ℂ ∧ dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
21 | 20 | simp2d 1142 | . . . . 5 ⊢ (𝜑 → dom (𝑦 ∈ 𝐵 ↦ 𝑆) ⊆ ℂ) |
22 | 17, 21 | eqsstrrd 3960 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
23 | 6 | snssd 4742 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ ℂ) |
24 | 22, 23 | unssd 4120 | . . 3 ⊢ (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ) |
25 | eqid 2738 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
26 | eqid 2738 | . . 3 ⊢ ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) | |
27 | 22, 6, 16, 26, 25 | limcmpt 25047 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ((𝑦 ∈ 𝐵 ↦ 𝑆) limℂ 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))) |
28 | 18, 27 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)) |
29 | 14, 24, 25, 26, 5, 28 | limccnp 25055 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋)) |
30 | eqid 2738 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) | |
31 | iftrue 4465 | . . 3 ⊢ (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷) | |
32 | ssun2 4107 | . . . 4 ⊢ {𝐶} ⊆ (𝐵 ∪ {𝐶}) | |
33 | snssg 4718 | . . . . 5 ⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) | |
34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶}))) |
35 | 32, 34 | mpbiri 257 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵 ∪ {𝐶})) |
36 | 30, 31, 35, 18 | fvmptd3 6898 | . 2 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷) |
37 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
38 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))) | |
39 | eqeq1 2742 | . . . . . 6 ⊢ (𝑦 = 𝑅 → (𝑦 = 𝐶 ↔ 𝑅 = 𝐶)) | |
40 | limcco.1 | . . . . . 6 ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) | |
41 | 39, 40 | ifbieq2d 4485 | . . . . 5 ⊢ (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
42 | 13, 37, 38, 41 | fmptco 7001 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇))) |
43 | limcco.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶)) → 𝑇 = 𝐷) | |
44 | 43 | anassrs 468 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷) |
45 | 44 | ifeq1da 4490 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇)) |
46 | ifid 4499 | . . . . . 6 ⊢ if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇 | |
47 | 45, 46 | eqtr3di 2793 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇) |
48 | 47 | mpteq2dva 5174 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
49 | 42, 48 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |
50 | 49 | oveq1d 7290 | . 2 ⊢ (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥 ∈ 𝐴 ↦ 𝑅)) limℂ 𝑋) = ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
51 | 29, 36, 50 | 3eltr3d 2853 | 1 ⊢ (𝜑 → 𝐷 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑇) limℂ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 ↦ cmpt 5157 dom cdm 5589 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 CnP ccnp 22376 limℂ climc 25026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cnp 22379 df-xms 23473 df-ms 23474 df-limc 25030 |
This theorem is referenced by: dvcobr 25110 dvcnvlem 25140 lhop2 25179 fourierdlem60 43707 fourierdlem61 43708 fourierdlem62 43709 fourierdlem73 43720 fourierdlem76 43723 |
Copyright terms: Public domain | W3C validator |