MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcco Structured version   Visualization version   GIF version

Theorem limcco 25942
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
limcco.r ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
limcco.s ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
limcco.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
limcco.d (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
limcco.1 (𝑦 = 𝑅𝑆 = 𝑇)
limcco.2 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
Assertion
Ref Expression
limcco (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem limcco
StepHypRef Expression
1 limcco.r . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑅𝐶)) → 𝑅𝐵)
21expr 456 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑅𝐶𝑅𝐵))
32necon1bd 2955 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 = 𝐶))
4 limccl 25924 . . . . . . . . . 10 ((𝑥𝐴𝑅) lim 𝑋) ⊆ ℂ
5 limcco.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋))
64, 5sselid 3992 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
76adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 elsn2g 4668 . . . . . . . 8 (𝐶 ∈ ℂ → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
97, 8syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑅 ∈ {𝐶} ↔ 𝑅 = 𝐶))
103, 9sylibrd 259 . . . . . 6 ((𝜑𝑥𝐴) → (¬ 𝑅𝐵𝑅 ∈ {𝐶}))
1110orrd 863 . . . . 5 ((𝜑𝑥𝐴) → (𝑅𝐵𝑅 ∈ {𝐶}))
12 elun 4162 . . . . 5 (𝑅 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑅𝐵𝑅 ∈ {𝐶}))
1311, 12sylibr 234 . . . 4 ((𝜑𝑥𝐴) → 𝑅 ∈ (𝐵 ∪ {𝐶}))
1413fmpttd 7134 . . 3 (𝜑 → (𝑥𝐴𝑅):𝐴⟶(𝐵 ∪ {𝐶}))
15 eqid 2734 . . . . . 6 (𝑦𝐵𝑆) = (𝑦𝐵𝑆)
16 limcco.s . . . . . 6 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
1715, 16dmmptd 6713 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) = 𝐵)
18 limcco.d . . . . . . 7 (𝜑𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶))
19 limcrcl 25923 . . . . . . 7 (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆):dom (𝑦𝐵𝑆)⟶ℂ ∧ dom (𝑦𝐵𝑆) ⊆ ℂ ∧ 𝐶 ∈ ℂ))
2120simp2d 1142 . . . . 5 (𝜑 → dom (𝑦𝐵𝑆) ⊆ ℂ)
2217, 21eqsstrrd 4034 . . . 4 (𝜑𝐵 ⊆ ℂ)
236snssd 4813 . . . 4 (𝜑 → {𝐶} ⊆ ℂ)
2422, 23unssd 4201 . . 3 (𝜑 → (𝐵 ∪ {𝐶}) ⊆ ℂ)
25 eqid 2734 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
26 eqid 2734 . . 3 ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶}))
2722, 6, 16, 26, 25limcmpt 25932 . . . 4 (𝜑 → (𝐷 ∈ ((𝑦𝐵𝑆) lim 𝐶) ↔ (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶)))
2818, 27mpbid 232 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∈ ((((TopOpen‘ℂfld) ↾t (𝐵 ∪ {𝐶})) CnP (TopOpen‘ℂfld))‘𝐶))
2914, 24, 25, 26, 5, 28limccnp 25940 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) ∈ (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋))
30 eqid 2734 . . 3 (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))
31 iftrue 4536 . . 3 (𝑦 = 𝐶 → if(𝑦 = 𝐶, 𝐷, 𝑆) = 𝐷)
32 ssun2 4188 . . . 4 {𝐶} ⊆ (𝐵 ∪ {𝐶})
33 snssg 4787 . . . . 5 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝑋) → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
345, 33syl 17 . . . 4 (𝜑 → (𝐶 ∈ (𝐵 ∪ {𝐶}) ↔ {𝐶} ⊆ (𝐵 ∪ {𝐶})))
3532, 34mpbiri 258 . . 3 (𝜑𝐶 ∈ (𝐵 ∪ {𝐶}))
3630, 31, 35, 18fvmptd3 7038 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆))‘𝐶) = 𝐷)
37 eqidd 2735 . . . . 5 (𝜑 → (𝑥𝐴𝑅) = (𝑥𝐴𝑅))
38 eqidd 2735 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) = (𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)))
39 eqeq1 2738 . . . . . 6 (𝑦 = 𝑅 → (𝑦 = 𝐶𝑅 = 𝐶))
40 limcco.1 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
4139, 40ifbieq2d 4556 . . . . 5 (𝑦 = 𝑅 → if(𝑦 = 𝐶, 𝐷, 𝑆) = if(𝑅 = 𝐶, 𝐷, 𝑇))
4213, 37, 38, 41fmptco 7148 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)))
43 limcco.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑅 = 𝐶)) → 𝑇 = 𝐷)
4443anassrs 467 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑅 = 𝐶) → 𝑇 = 𝐷)
4544ifeq1da 4561 . . . . . 6 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝑇, 𝑇) = if(𝑅 = 𝐶, 𝐷, 𝑇))
46 ifid 4570 . . . . . 6 if(𝑅 = 𝐶, 𝑇, 𝑇) = 𝑇
4745, 46eqtr3di 2789 . . . . 5 ((𝜑𝑥𝐴) → if(𝑅 = 𝐶, 𝐷, 𝑇) = 𝑇)
4847mpteq2dva 5247 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑅 = 𝐶, 𝐷, 𝑇)) = (𝑥𝐴𝑇))
4942, 48eqtrd 2774 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) = (𝑥𝐴𝑇))
5049oveq1d 7445 . 2 (𝜑 → (((𝑦 ∈ (𝐵 ∪ {𝐶}) ↦ if(𝑦 = 𝐶, 𝐷, 𝑆)) ∘ (𝑥𝐴𝑅)) lim 𝑋) = ((𝑥𝐴𝑇) lim 𝑋))
5129, 36, 503eltr3d 2852 1 (𝜑𝐷 ∈ ((𝑥𝐴𝑇) lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cun 3960  wss 3962  ifcif 4530  {csn 4630  cmpt 5230  dom cdm 5688  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  t crest 17466  TopOpenctopn 17467  fldccnfld 21381   CnP ccnp 23248   lim climc 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cnp 23251  df-xms 24345  df-ms 24346  df-limc 25915
This theorem is referenced by:  dvcobr  25997  dvcobrOLD  25998  dvcnvlem  26028  lhop2  26068  fourierdlem60  46121  fourierdlem61  46122  fourierdlem62  46123  fourierdlem73  46134  fourierdlem76  46137
  Copyright terms: Public domain W3C validator