Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evth2f | Structured version Visualization version GIF version |
Description: A version of evth2 23862 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
evth2f.1 | ⊢ Ⅎ𝑥𝐹 |
evth2f.2 | ⊢ Ⅎ𝑦𝐹 |
evth2f.3 | ⊢ Ⅎ𝑥𝑋 |
evth2f.4 | ⊢ Ⅎ𝑦𝑋 |
evth2f.5 | ⊢ 𝑋 = ∪ 𝐽 |
evth2f.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
evth2f.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
evth2f.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
evth2f.9 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
Ref | Expression |
---|---|
evth2f | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evth2f.5 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | evth2f.6 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
3 | evth2f.7 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
4 | evth2f.8 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | evth2f.9 | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
6 | 1, 2, 3, 4, 5 | evth2 23862 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏)) |
7 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑎𝑋 | |
8 | evth2f.3 | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
9 | evth2f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
10 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥𝑎 | |
11 | 9, 10 | nffv 6732 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑎) |
12 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
13 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
14 | 9, 13 | nffv 6732 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑏) |
15 | 11, 12, 14 | nfbr 5105 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑎) ≤ (𝐹‘𝑏) |
16 | 8, 15 | nfralw 3147 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) |
17 | nfv 1922 | . . . 4 ⊢ Ⅎ𝑎∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) | |
18 | fveq2 6722 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
19 | 18 | breq1d 5068 | . . . . 5 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
20 | 19 | ralbidv 3118 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
21 | 7, 8, 16, 17, 20 | cbvrexfw 3351 | . . 3 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏)) |
22 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑏𝑋 | |
23 | evth2f.4 | . . . . 5 ⊢ Ⅎ𝑦𝑋 | |
24 | evth2f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
25 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝑥 | |
26 | 24, 25 | nffv 6732 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
27 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦 ≤ | |
28 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝑏 | |
29 | 24, 28 | nffv 6732 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑏) |
30 | 26, 27, 29 | nfbr 5105 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≤ (𝐹‘𝑏) |
31 | nfv 1922 | . . . . 5 ⊢ Ⅎ𝑏(𝐹‘𝑥) ≤ (𝐹‘𝑦) | |
32 | fveq2 6722 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) | |
33 | 32 | breq2d 5070 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
34 | 22, 23, 30, 31, 33 | cbvralfw 3349 | . . . 4 ⊢ (∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
35 | 34 | rexbii 3175 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
36 | 21, 35 | bitri 278 | . 2 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
37 | 6, 36 | sylib 221 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Ⅎwnfc 2884 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 ∅c0 4242 ∪ cuni 4824 class class class wbr 5058 ran crn 5557 ‘cfv 6385 (class class class)co 7218 ≤ cle 10873 (,)cioo 12940 topGenctg 16947 Cn ccn 22126 Compccmp 22288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-mulf 10814 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-2o 8208 df-er 8396 df-map 8515 df-ixp 8584 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-fi 9032 df-sup 9063 df-inf 9064 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-z 12182 df-dec 12299 df-uz 12444 df-q 12550 df-rp 12592 df-xneg 12709 df-xadd 12710 df-xmul 12711 df-ioo 12944 df-icc 12947 df-fz 13101 df-fzo 13244 df-seq 13580 df-exp 13641 df-hash 13902 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-starv 16822 df-sca 16823 df-vsca 16824 df-ip 16825 df-tset 16826 df-ple 16827 df-ds 16829 df-unif 16830 df-hom 16831 df-cco 16832 df-rest 16932 df-topn 16933 df-0g 16951 df-gsum 16952 df-topgen 16953 df-pt 16954 df-prds 16957 df-xrs 17012 df-qtop 17017 df-imas 17018 df-xps 17020 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-mulg 18494 df-cntz 18716 df-cmn 19177 df-psmet 20360 df-xmet 20361 df-met 20362 df-bl 20363 df-mopn 20364 df-cnfld 20369 df-top 21796 df-topon 21813 df-topsp 21835 df-bases 21848 df-cn 22129 df-cnp 22130 df-cmp 22289 df-tx 22464 df-hmeo 22657 df-xms 23223 df-ms 23224 df-tms 23225 |
This theorem is referenced by: stoweidlem29 43253 |
Copyright terms: Public domain | W3C validator |