| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evth2f | Structured version Visualization version GIF version | ||
| Description: A version of evth2 24908 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| evth2f.1 | ⊢ Ⅎ𝑥𝐹 |
| evth2f.2 | ⊢ Ⅎ𝑦𝐹 |
| evth2f.3 | ⊢ Ⅎ𝑥𝑋 |
| evth2f.4 | ⊢ Ⅎ𝑦𝑋 |
| evth2f.5 | ⊢ 𝑋 = ∪ 𝐽 |
| evth2f.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
| evth2f.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| evth2f.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| evth2f.9 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| Ref | Expression |
|---|---|
| evth2f | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evth2f.5 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | evth2f.6 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 3 | evth2f.7 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 4 | evth2f.8 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | evth2f.9 | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 6 | 1, 2, 3, 4, 5 | evth2 24908 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏)) |
| 7 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑎𝑋 | |
| 8 | evth2f.3 | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
| 9 | evth2f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 10 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑎 | |
| 11 | 9, 10 | nffv 6885 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑎) |
| 12 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
| 13 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
| 14 | 9, 13 | nffv 6885 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑏) |
| 15 | 11, 12, 14 | nfbr 5166 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑎) ≤ (𝐹‘𝑏) |
| 16 | 8, 15 | nfralw 3291 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) |
| 17 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑎∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) | |
| 18 | fveq2 6875 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
| 19 | 18 | breq1d 5129 | . . . . 5 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
| 20 | 19 | ralbidv 3163 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
| 21 | 7, 8, 16, 17, 20 | cbvrexfw 3285 | . . 3 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏)) |
| 22 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑏𝑋 | |
| 23 | evth2f.4 | . . . . 5 ⊢ Ⅎ𝑦𝑋 | |
| 24 | evth2f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
| 25 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑦𝑥 | |
| 26 | 24, 25 | nffv 6885 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
| 27 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑦 ≤ | |
| 28 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑦𝑏 | |
| 29 | 24, 28 | nffv 6885 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑏) |
| 30 | 26, 27, 29 | nfbr 5166 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≤ (𝐹‘𝑏) |
| 31 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑏(𝐹‘𝑥) ≤ (𝐹‘𝑦) | |
| 32 | fveq2 6875 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) | |
| 33 | 32 | breq2d 5131 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 34 | 22, 23, 30, 31, 33 | cbvralfw 3284 | . . . 4 ⊢ (∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
| 35 | 34 | rexbii 3083 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
| 36 | 21, 35 | bitri 275 | . 2 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
| 37 | 6, 36 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∅c0 4308 ∪ cuni 4883 class class class wbr 5119 ran crn 5655 ‘cfv 6530 (class class class)co 7403 ≤ cle 11268 (,)cioo 13360 topGenctg 17449 Cn ccn 23160 Compccmp 23322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cn 23163 df-cnp 23164 df-cmp 23323 df-tx 23498 df-hmeo 23691 df-xms 24257 df-ms 24258 df-tms 24259 |
| This theorem is referenced by: stoweidlem29 46006 |
| Copyright terms: Public domain | W3C validator |