Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evth2f Structured version   Visualization version   GIF version

Theorem evth2f 44993
Description: A version of evth2 24982 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
evth2f.1 𝑥𝐹
evth2f.2 𝑦𝐹
evth2f.3 𝑥𝑋
evth2f.4 𝑦𝑋
evth2f.5 𝑋 = 𝐽
evth2f.6 𝐾 = (topGen‘ran (,))
evth2f.7 (𝜑𝐽 ∈ Comp)
evth2f.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth2f.9 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth2f (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem evth2f
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evth2f.5 . . 3 𝑋 = 𝐽
2 evth2f.6 . . 3 𝐾 = (topGen‘ran (,))
3 evth2f.7 . . 3 (𝜑𝐽 ∈ Comp)
4 evth2f.8 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
5 evth2f.9 . . 3 (𝜑𝑋 ≠ ∅)
61, 2, 3, 4, 5evth2 24982 . 2 (𝜑 → ∃𝑎𝑋𝑏𝑋 (𝐹𝑎) ≤ (𝐹𝑏))
7 nfcv 2904 . . . 4 𝑎𝑋
8 evth2f.3 . . . 4 𝑥𝑋
9 evth2f.1 . . . . . . 7 𝑥𝐹
10 nfcv 2904 . . . . . . 7 𝑥𝑎
119, 10nffv 6914 . . . . . 6 𝑥(𝐹𝑎)
12 nfcv 2904 . . . . . 6 𝑥
13 nfcv 2904 . . . . . . 7 𝑥𝑏
149, 13nffv 6914 . . . . . 6 𝑥(𝐹𝑏)
1511, 12, 14nfbr 5188 . . . . 5 𝑥(𝐹𝑎) ≤ (𝐹𝑏)
168, 15nfralw 3310 . . . 4 𝑥𝑏𝑋 (𝐹𝑎) ≤ (𝐹𝑏)
17 nfv 1914 . . . 4 𝑎𝑏𝑋 (𝐹𝑥) ≤ (𝐹𝑏)
18 fveq2 6904 . . . . . 6 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
1918breq1d 5151 . . . . 5 (𝑎 = 𝑥 → ((𝐹𝑎) ≤ (𝐹𝑏) ↔ (𝐹𝑥) ≤ (𝐹𝑏)))
2019ralbidv 3177 . . . 4 (𝑎 = 𝑥 → (∀𝑏𝑋 (𝐹𝑎) ≤ (𝐹𝑏) ↔ ∀𝑏𝑋 (𝐹𝑥) ≤ (𝐹𝑏)))
217, 8, 16, 17, 20cbvrexfw 3304 . . 3 (∃𝑎𝑋𝑏𝑋 (𝐹𝑎) ≤ (𝐹𝑏) ↔ ∃𝑥𝑋𝑏𝑋 (𝐹𝑥) ≤ (𝐹𝑏))
22 nfcv 2904 . . . . 5 𝑏𝑋
23 evth2f.4 . . . . 5 𝑦𝑋
24 evth2f.2 . . . . . . 7 𝑦𝐹
25 nfcv 2904 . . . . . . 7 𝑦𝑥
2624, 25nffv 6914 . . . . . 6 𝑦(𝐹𝑥)
27 nfcv 2904 . . . . . 6 𝑦
28 nfcv 2904 . . . . . . 7 𝑦𝑏
2924, 28nffv 6914 . . . . . 6 𝑦(𝐹𝑏)
3026, 27, 29nfbr 5188 . . . . 5 𝑦(𝐹𝑥) ≤ (𝐹𝑏)
31 nfv 1914 . . . . 5 𝑏(𝐹𝑥) ≤ (𝐹𝑦)
32 fveq2 6904 . . . . . 6 (𝑏 = 𝑦 → (𝐹𝑏) = (𝐹𝑦))
3332breq2d 5153 . . . . 5 (𝑏 = 𝑦 → ((𝐹𝑥) ≤ (𝐹𝑏) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
3422, 23, 30, 31, 33cbvralfw 3303 . . . 4 (∀𝑏𝑋 (𝐹𝑥) ≤ (𝐹𝑏) ↔ ∀𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
3534rexbii 3093 . . 3 (∃𝑥𝑋𝑏𝑋 (𝐹𝑥) ≤ (𝐹𝑏) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
3621, 35bitri 275 . 2 (∃𝑎𝑋𝑏𝑋 (𝐹𝑎) ≤ (𝐹𝑏) ↔ ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
376, 36sylib 218 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wnfc 2889  wne 2939  wral 3060  wrex 3069  c0 4332   cuni 4905   class class class wbr 5141  ran crn 5684  cfv 6559  (class class class)co 7429  cle 11292  (,)cioo 13383  topGenctg 17478   Cn ccn 23222  Compccmp 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-of 7694  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-fsupp 9398  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-q 12987  df-rp 13031  df-xneg 13150  df-xadd 13151  df-xmul 13152  df-ioo 13387  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-starv 17308  df-sca 17309  df-vsca 17310  df-ip 17311  df-tset 17312  df-ple 17313  df-ds 17315  df-unif 17316  df-hom 17317  df-cco 17318  df-rest 17463  df-topn 17464  df-0g 17482  df-gsum 17483  df-topgen 17484  df-pt 17485  df-prds 17488  df-xrs 17543  df-qtop 17548  df-imas 17549  df-xps 17551  df-mre 17625  df-mrc 17626  df-acs 17628  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-submnd 18793  df-mulg 19082  df-cntz 19331  df-cmn 19796  df-psmet 21348  df-xmet 21349  df-met 21350  df-bl 21351  df-mopn 21352  df-cnfld 21357  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-cn 23225  df-cnp 23226  df-cmp 23385  df-tx 23560  df-hmeo 23753  df-xms 24320  df-ms 24321  df-tms 24322
This theorem is referenced by:  stoweidlem29  46017
  Copyright terms: Public domain W3C validator