![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evth2f | Structured version Visualization version GIF version |
Description: A version of evth2 25003 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
evth2f.1 | ⊢ Ⅎ𝑥𝐹 |
evth2f.2 | ⊢ Ⅎ𝑦𝐹 |
evth2f.3 | ⊢ Ⅎ𝑥𝑋 |
evth2f.4 | ⊢ Ⅎ𝑦𝑋 |
evth2f.5 | ⊢ 𝑋 = ∪ 𝐽 |
evth2f.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
evth2f.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
evth2f.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
evth2f.9 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
Ref | Expression |
---|---|
evth2f | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evth2f.5 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | evth2f.6 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
3 | evth2f.7 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
4 | evth2f.8 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | evth2f.9 | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
6 | 1, 2, 3, 4, 5 | evth2 25003 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏)) |
7 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑎𝑋 | |
8 | evth2f.3 | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
9 | evth2f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
10 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑎 | |
11 | 9, 10 | nffv 6925 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑎) |
12 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
13 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
14 | 9, 13 | nffv 6925 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑏) |
15 | 11, 12, 14 | nfbr 5213 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑎) ≤ (𝐹‘𝑏) |
16 | 8, 15 | nfralw 3317 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) |
17 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑎∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) | |
18 | fveq2 6915 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
19 | 18 | breq1d 5176 | . . . . 5 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
20 | 19 | ralbidv 3184 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
21 | 7, 8, 16, 17, 20 | cbvrexfw 3311 | . . 3 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏)) |
22 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑏𝑋 | |
23 | evth2f.4 | . . . . 5 ⊢ Ⅎ𝑦𝑋 | |
24 | evth2f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
25 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑦𝑥 | |
26 | 24, 25 | nffv 6925 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
27 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑦 ≤ | |
28 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑦𝑏 | |
29 | 24, 28 | nffv 6925 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑏) |
30 | 26, 27, 29 | nfbr 5213 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≤ (𝐹‘𝑏) |
31 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑏(𝐹‘𝑥) ≤ (𝐹‘𝑦) | |
32 | fveq2 6915 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) | |
33 | 32 | breq2d 5178 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
34 | 22, 23, 30, 31, 33 | cbvralfw 3310 | . . . 4 ⊢ (∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
35 | 34 | rexbii 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
36 | 21, 35 | bitri 275 | . 2 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
37 | 6, 36 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 ran crn 5696 ‘cfv 6568 (class class class)co 7443 ≤ cle 11319 (,)cioo 13401 topGenctg 17491 Cn ccn 23245 Compccmp 23407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-fi 9474 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-q 13008 df-rp 13052 df-xneg 13169 df-xadd 13170 df-xmul 13171 df-ioo 13405 df-icc 13408 df-fz 13562 df-fzo 13706 df-seq 14047 df-exp 14107 df-hash 14374 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-rest 17476 df-topn 17477 df-0g 17495 df-gsum 17496 df-topgen 17497 df-pt 17498 df-prds 17501 df-xrs 17556 df-qtop 17561 df-imas 17562 df-xps 17564 df-mre 17638 df-mrc 17639 df-acs 17641 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18813 df-mulg 19102 df-cntz 19351 df-cmn 19818 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22913 df-topon 22930 df-topsp 22952 df-bases 22966 df-cn 23248 df-cnp 23249 df-cmp 23408 df-tx 23583 df-hmeo 23776 df-xms 24343 df-ms 24344 df-tms 24345 |
This theorem is referenced by: stoweidlem29 45939 |
Copyright terms: Public domain | W3C validator |