![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evth2f | Structured version Visualization version GIF version |
Description: A version of evth2 24806 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
evth2f.1 | β’ β²π₯πΉ |
evth2f.2 | β’ β²π¦πΉ |
evth2f.3 | β’ β²π₯π |
evth2f.4 | β’ β²π¦π |
evth2f.5 | β’ π = βͺ π½ |
evth2f.6 | β’ πΎ = (topGenβran (,)) |
evth2f.7 | β’ (π β π½ β Comp) |
evth2f.8 | β’ (π β πΉ β (π½ Cn πΎ)) |
evth2f.9 | β’ (π β π β β ) |
Ref | Expression |
---|---|
evth2f | β’ (π β βπ₯ β π βπ¦ β π (πΉβπ₯) β€ (πΉβπ¦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evth2f.5 | . . 3 β’ π = βͺ π½ | |
2 | evth2f.6 | . . 3 β’ πΎ = (topGenβran (,)) | |
3 | evth2f.7 | . . 3 β’ (π β π½ β Comp) | |
4 | evth2f.8 | . . 3 β’ (π β πΉ β (π½ Cn πΎ)) | |
5 | evth2f.9 | . . 3 β’ (π β π β β ) | |
6 | 1, 2, 3, 4, 5 | evth2 24806 | . 2 β’ (π β βπ β π βπ β π (πΉβπ) β€ (πΉβπ)) |
7 | nfcv 2902 | . . . 4 β’ β²ππ | |
8 | evth2f.3 | . . . 4 β’ β²π₯π | |
9 | evth2f.1 | . . . . . . 7 β’ β²π₯πΉ | |
10 | nfcv 2902 | . . . . . . 7 β’ β²π₯π | |
11 | 9, 10 | nffv 6901 | . . . . . 6 β’ β²π₯(πΉβπ) |
12 | nfcv 2902 | . . . . . 6 β’ β²π₯ β€ | |
13 | nfcv 2902 | . . . . . . 7 β’ β²π₯π | |
14 | 9, 13 | nffv 6901 | . . . . . 6 β’ β²π₯(πΉβπ) |
15 | 11, 12, 14 | nfbr 5195 | . . . . 5 β’ β²π₯(πΉβπ) β€ (πΉβπ) |
16 | 8, 15 | nfralw 3307 | . . . 4 β’ β²π₯βπ β π (πΉβπ) β€ (πΉβπ) |
17 | nfv 1916 | . . . 4 β’ β²πβπ β π (πΉβπ₯) β€ (πΉβπ) | |
18 | fveq2 6891 | . . . . . 6 β’ (π = π₯ β (πΉβπ) = (πΉβπ₯)) | |
19 | 18 | breq1d 5158 | . . . . 5 β’ (π = π₯ β ((πΉβπ) β€ (πΉβπ) β (πΉβπ₯) β€ (πΉβπ))) |
20 | 19 | ralbidv 3176 | . . . 4 β’ (π = π₯ β (βπ β π (πΉβπ) β€ (πΉβπ) β βπ β π (πΉβπ₯) β€ (πΉβπ))) |
21 | 7, 8, 16, 17, 20 | cbvrexfw 3301 | . . 3 β’ (βπ β π βπ β π (πΉβπ) β€ (πΉβπ) β βπ₯ β π βπ β π (πΉβπ₯) β€ (πΉβπ)) |
22 | nfcv 2902 | . . . . 5 β’ β²ππ | |
23 | evth2f.4 | . . . . 5 β’ β²π¦π | |
24 | evth2f.2 | . . . . . . 7 β’ β²π¦πΉ | |
25 | nfcv 2902 | . . . . . . 7 β’ β²π¦π₯ | |
26 | 24, 25 | nffv 6901 | . . . . . 6 β’ β²π¦(πΉβπ₯) |
27 | nfcv 2902 | . . . . . 6 β’ β²π¦ β€ | |
28 | nfcv 2902 | . . . . . . 7 β’ β²π¦π | |
29 | 24, 28 | nffv 6901 | . . . . . 6 β’ β²π¦(πΉβπ) |
30 | 26, 27, 29 | nfbr 5195 | . . . . 5 β’ β²π¦(πΉβπ₯) β€ (πΉβπ) |
31 | nfv 1916 | . . . . 5 β’ β²π(πΉβπ₯) β€ (πΉβπ¦) | |
32 | fveq2 6891 | . . . . . 6 β’ (π = π¦ β (πΉβπ) = (πΉβπ¦)) | |
33 | 32 | breq2d 5160 | . . . . 5 β’ (π = π¦ β ((πΉβπ₯) β€ (πΉβπ) β (πΉβπ₯) β€ (πΉβπ¦))) |
34 | 22, 23, 30, 31, 33 | cbvralfw 3300 | . . . 4 β’ (βπ β π (πΉβπ₯) β€ (πΉβπ) β βπ¦ β π (πΉβπ₯) β€ (πΉβπ¦)) |
35 | 34 | rexbii 3093 | . . 3 β’ (βπ₯ β π βπ β π (πΉβπ₯) β€ (πΉβπ) β βπ₯ β π βπ¦ β π (πΉβπ₯) β€ (πΉβπ¦)) |
36 | 21, 35 | bitri 275 | . 2 β’ (βπ β π βπ β π (πΉβπ) β€ (πΉβπ) β βπ₯ β π βπ¦ β π (πΉβπ₯) β€ (πΉβπ¦)) |
37 | 6, 36 | sylib 217 | 1 β’ (π β βπ₯ β π βπ¦ β π (πΉβπ₯) β€ (πΉβπ¦)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β²wnfc 2882 β wne 2939 βwral 3060 βwrex 3069 β c0 4322 βͺ cuni 4908 class class class wbr 5148 ran crn 5677 βcfv 6543 (class class class)co 7412 β€ cle 11256 (,)cioo 13331 topGenctg 17390 Cn ccn 23048 Compccmp 23210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-icc 13338 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cn 23051 df-cnp 23052 df-cmp 23211 df-tx 23386 df-hmeo 23579 df-xms 24146 df-ms 24147 df-tms 24148 |
This theorem is referenced by: stoweidlem29 45204 |
Copyright terms: Public domain | W3C validator |