Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontric3g Structured version   Visualization version   GIF version

Theorem ontric3g 43126
Description: For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥𝑦, 𝑦 = 𝑥, or 𝑦𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
ontric3g 𝑥 ∈ On ∀𝑦 ∈ On ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
Distinct variable group:   𝑥,𝑦

Proof of Theorem ontric3g
StepHypRef Expression
1 orcom 868 . . . . . . 7 ((𝑦 = 𝑥𝑦𝑥) ↔ (𝑦𝑥𝑦 = 𝑥))
21a1i 11 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥𝑦𝑥) ↔ (𝑦𝑥𝑦 = 𝑥)))
3 onsseleq 6416 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
4 ontri1 6409 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
52, 3, 43bitr2d 306 . . . . 5 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥𝑦𝑥) ↔ ¬ 𝑥𝑦))
65con2bid 353 . . . 4 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)))
76ancoms 457 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)))
84ancoms 457 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
9 ontri1 6409 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
108, 9anbi12d 630 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑦𝑥𝑥𝑦) ↔ (¬ 𝑥𝑦 ∧ ¬ 𝑦𝑥)))
11 eqss 3994 . . . 4 (𝑦 = 𝑥 ↔ (𝑦𝑥𝑥𝑦))
12 ioran 981 . . . 4 (¬ (𝑥𝑦𝑦𝑥) ↔ (¬ 𝑥𝑦 ∧ ¬ 𝑦𝑥))
1310, 11, 123bitr4g 313 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)))
14 equcom 2013 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
1514orbi2i 910 . . . . . 6 ((𝑥𝑦𝑦 = 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦))
1615a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑦 = 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦)))
17 onsseleq 6416 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ (𝑥𝑦𝑥 = 𝑦)))
1816, 17, 93bitr2d 306 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑦 = 𝑥) ↔ ¬ 𝑦𝑥))
1918con2bid 353 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
207, 13, 193jca 1125 . 2 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥))))
2120rgen2 3187 1 𝑥 ∈ On ∀𝑦 ∈ On ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wo 845  w3a 1084  wcel 2098  wral 3050  wss 3946  Oncon0 6375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-ord 6378  df-on 6379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator