Proof of Theorem ontric3g
| Step | Hyp | Ref
| Expression |
| 1 | | orcom 870 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥)) |
| 2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥))) |
| 3 | | onsseleq 6406 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ (𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥))) |
| 4 | | ontri1 6399 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
| 5 | 2, 3, 4 | 3bitr2d 307 |
. . . . 5
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥) ↔ ¬ 𝑥 ∈ 𝑦)) |
| 6 | 5 | con2bid 354 |
. . . 4
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥))) |
| 7 | 6 | ancoms 458 |
. . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥))) |
| 8 | 4 | ancoms 458 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
| 9 | | ontri1 6399 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑥)) |
| 10 | 8, 9 | anbi12d 632 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑦) ↔ (¬ 𝑥 ∈ 𝑦 ∧ ¬ 𝑦 ∈ 𝑥))) |
| 11 | | eqss 3981 |
. . . 4
⊢ (𝑦 = 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑦)) |
| 12 | | ioran 985 |
. . . 4
⊢ (¬
(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (¬ 𝑥 ∈ 𝑦 ∧ ¬ 𝑦 ∈ 𝑥)) |
| 13 | 10, 11, 12 | 3bitr4g 314 |
. . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥))) |
| 14 | | equcom 2016 |
. . . . . . 7
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 15 | 14 | orbi2i 912 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦)) |
| 16 | 15 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦))) |
| 17 | | onsseleq 6406 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ⊆ 𝑦 ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦))) |
| 18 | 16, 17, 9 | 3bitr2d 307 |
. . . 4
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥) ↔ ¬ 𝑦 ∈ 𝑥)) |
| 19 | 18 | con2bid 354 |
. . 3
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥))) |
| 20 | 7, 13, 19 | 3jca 1128 |
. 2
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥)))) |
| 21 | 20 | rgen2 3186 |
1
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On ((𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥))) |