Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontric3g Structured version   Visualization version   GIF version

Theorem ontric3g 43480
Description: For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥𝑦, 𝑦 = 𝑥, or 𝑦𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
ontric3g 𝑥 ∈ On ∀𝑦 ∈ On ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
Distinct variable group:   𝑥,𝑦

Proof of Theorem ontric3g
StepHypRef Expression
1 orcom 870 . . . . . . 7 ((𝑦 = 𝑥𝑦𝑥) ↔ (𝑦𝑥𝑦 = 𝑥))
21a1i 11 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥𝑦𝑥) ↔ (𝑦𝑥𝑦 = 𝑥)))
3 onsseleq 6406 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦 = 𝑥)))
4 ontri1 6399 . . . . . 6 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
52, 3, 43bitr2d 307 . . . . 5 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 = 𝑥𝑦𝑥) ↔ ¬ 𝑥𝑦))
65con2bid 354 . . . 4 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)))
76ancoms 458 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)))
84ancoms 458 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
9 ontri1 6399 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
108, 9anbi12d 632 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑦𝑥𝑥𝑦) ↔ (¬ 𝑥𝑦 ∧ ¬ 𝑦𝑥)))
11 eqss 3981 . . . 4 (𝑦 = 𝑥 ↔ (𝑦𝑥𝑥𝑦))
12 ioran 985 . . . 4 (¬ (𝑥𝑦𝑦𝑥) ↔ (¬ 𝑥𝑦 ∧ ¬ 𝑦𝑥))
1310, 11, 123bitr4g 314 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)))
14 equcom 2016 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
1514orbi2i 912 . . . . . 6 ((𝑥𝑦𝑦 = 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦))
1615a1i 11 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑦 = 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦)))
17 onsseleq 6406 . . . . 5 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦 ↔ (𝑥𝑦𝑥 = 𝑦)))
1816, 17, 93bitr2d 307 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦𝑦 = 𝑥) ↔ ¬ 𝑦𝑥))
1918con2bid 354 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
207, 13, 193jca 1128 . 2 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥))))
2120rgen2 3186 1 𝑥 ∈ On ∀𝑦 ∈ On ((𝑥𝑦 ↔ ¬ (𝑦 = 𝑥𝑦𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥𝑦𝑦𝑥)) ∧ (𝑦𝑥 ↔ ¬ (𝑥𝑦𝑦 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086  wcel 2107  wral 3050  wss 3933  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator