MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabsf Structured version   Visualization version   GIF version

Theorem elrabsf 3759
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3613 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1 𝑥𝐵
Assertion
Ref Expression
elrabsf (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))

Proof of Theorem elrabsf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3713 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 elrabsf.1 . . 3 𝑥𝐵
3 nfcv 2906 . . 3 𝑦𝐵
4 nfv 1918 . . 3 𝑦𝜑
5 nfsbc1v 3731 . . 3 𝑥[𝑦 / 𝑥]𝜑
6 sbceq1a 3722 . . 3 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
72, 3, 4, 5, 6cbvrabw 3414 . 2 {𝑥𝐵𝜑} = {𝑦𝐵[𝑦 / 𝑥]𝜑}
81, 7elrab2 3620 1 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wnfc 2886  {crab 3067  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712
This theorem is referenced by:  frpoinsg  6231  wfisgOLD  6242  onminesb  7620  mpoxopovel  8007  frinsg  9440  ac6num  10166  hashrabsn1  14017  bnj23  32597  bnj1204  32892  tfisg  33692  rabrenfdioph  40552
  Copyright terms: Public domain W3C validator