| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrabsf | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3658 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| elrabsf.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| elrabsf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3758 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | elrabsf.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfsbc1v 3776 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 6 | sbceq1a 3767 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 7 | 2, 3, 4, 5, 6 | cbvrabw 3444 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ [𝑦 / 𝑥]𝜑} |
| 8 | 1, 7 | elrab2 3665 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2877 {crab 3408 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-sbc 3757 |
| This theorem is referenced by: frpoinsg 6319 onminesb 7772 tfisg 7833 mpoxopovel 8202 frinsg 9711 ac6num 10439 hashrabsn1 14346 bnj23 34715 bnj1204 35009 weiunlem2 36458 rabrenfdioph 42809 |
| Copyright terms: Public domain | W3C validator |