Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrabsf | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3620 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
elrabsf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
elrabsf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3718 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | elrabsf.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
4 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
5 | nfsbc1v 3736 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
6 | sbceq1a 3727 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 2, 3, 4, 5, 6 | cbvrabw 3424 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ [𝑦 / 𝑥]𝜑} |
8 | 1, 7 | elrab2 3627 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Ⅎwnfc 2887 {crab 3068 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-sbc 3717 |
This theorem is referenced by: frpoinsg 6246 wfisgOLD 6257 onminesb 7643 mpoxopovel 8036 frinsg 9509 ac6num 10235 hashrabsn1 14089 bnj23 32697 bnj1204 32992 tfisg 33786 rabrenfdioph 40636 |
Copyright terms: Public domain | W3C validator |