MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwun Structured version   Visualization version   GIF version

Theorem uniwun 10734
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10829 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10829. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
uniwun WUni = V

Proof of Theorem uniwun
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3483 . 2 ( WUni = V ↔ ∀𝑥 𝑥 WUni)
2 vsnex 5429 . . . 4 {𝑥} ∈ V
3 wunex 10733 . . . 4 ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
42, 3ax-mp 5 . . 3 𝑢 ∈ WUni {𝑥} ⊆ 𝑢
5 eluni2 4912 . . . 4 (𝑥 WUni ↔ ∃𝑢 ∈ WUni 𝑥𝑢)
6 vex 3478 . . . . . 6 𝑥 ∈ V
76snss 4789 . . . . 5 (𝑥𝑢 ↔ {𝑥} ⊆ 𝑢)
87rexbii 3094 . . . 4 (∃𝑢 ∈ WUni 𝑥𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
95, 8bitri 274 . . 3 (𝑥 WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
104, 9mpbir 230 . 2 𝑥 WUni
111, 10mpgbir 1801 1 WUni = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3948  {csn 4628   cuni 4908  WUnicwun 10694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-wun 10696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator