MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwun Structured version   Visualization version   GIF version

Theorem uniwun 9764
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 9859 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 9859. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
uniwun WUni = V

Proof of Theorem uniwun
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3356 . 2 ( WUni = V ↔ ∀𝑥 𝑥 WUni)
2 snex 5036 . . . 4 {𝑥} ∈ V
3 wunex 9763 . . . 4 ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
42, 3ax-mp 5 . . 3 𝑢 ∈ WUni {𝑥} ⊆ 𝑢
5 eluni2 4578 . . . 4 (𝑥 WUni ↔ ∃𝑢 ∈ WUni 𝑥𝑢)
6 vex 3354 . . . . . 6 𝑥 ∈ V
76snss 4451 . . . . 5 (𝑥𝑢 ↔ {𝑥} ⊆ 𝑢)
87rexbii 3189 . . . 4 (∃𝑢 ∈ WUni 𝑥𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
95, 8bitri 264 . . 3 (𝑥 WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
104, 9mpbir 221 . 2 𝑥 WUni
111, 10mpgbir 1874 1 WUni = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  wrex 3062  Vcvv 3351  wss 3723  {csn 4316   cuni 4574  WUnicwun 9724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-wun 9726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator