| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniwun | Structured version Visualization version GIF version | ||
| Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10849 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10849. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| uniwun | ⊢ ∪ WUni = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3469 | . 2 ⊢ (∪ WUni = V ↔ ∀𝑥 𝑥 ∈ ∪ WUni) | |
| 2 | vsnex 5404 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | wunex 10753 | . . . 4 ⊢ ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢 |
| 5 | eluni2 4887 | . . . 4 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni 𝑥 ∈ 𝑢) | |
| 6 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | snss 4761 | . . . . 5 ⊢ (𝑥 ∈ 𝑢 ↔ {𝑥} ⊆ 𝑢) |
| 8 | 7 | rexbii 3083 | . . . 4 ⊢ (∃𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
| 9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
| 10 | 4, 9 | mpbir 231 | . 2 ⊢ 𝑥 ∈ ∪ WUni |
| 11 | 1, 10 | mpgbir 1799 | 1 ⊢ ∪ WUni = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 WUnicwun 10714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-wun 10716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |