![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniwun | Structured version Visualization version GIF version |
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10826 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10826. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
uniwun | ⊢ ∪ WUni = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3475 | . 2 ⊢ (∪ WUni = V ↔ ∀𝑥 𝑥 ∈ ∪ WUni) | |
2 | vsnex 5419 | . . . 4 ⊢ {𝑥} ∈ V | |
3 | wunex 10730 | . . . 4 ⊢ ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢 |
5 | eluni2 4903 | . . . 4 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni 𝑥 ∈ 𝑢) | |
6 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | snss 4781 | . . . . 5 ⊢ (𝑥 ∈ 𝑢 ↔ {𝑥} ⊆ 𝑢) |
8 | 7 | rexbii 3086 | . . . 4 ⊢ (∃𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
10 | 4, 9 | mpbir 230 | . 2 ⊢ 𝑥 ∈ ∪ WUni |
11 | 1, 10 | mpgbir 1793 | 1 ⊢ ∪ WUni = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 ⊆ wss 3940 {csn 4620 ∪ cuni 4899 WUnicwun 10691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-wun 10693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |