| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniwun | Structured version Visualization version GIF version | ||
| Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10733 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10733. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| uniwun | ⊢ ∪ WUni = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3447 | . 2 ⊢ (∪ WUni = V ↔ ∀𝑥 𝑥 ∈ ∪ WUni) | |
| 2 | vsnex 5374 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | wunex 10637 | . . . 4 ⊢ ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢 |
| 5 | eluni2 4862 | . . . 4 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni 𝑥 ∈ 𝑢) | |
| 6 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | snss 4736 | . . . . 5 ⊢ (𝑥 ∈ 𝑢 ↔ {𝑥} ⊆ 𝑢) |
| 8 | 7 | rexbii 3080 | . . . 4 ⊢ (∃𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
| 9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
| 10 | 4, 9 | mpbir 231 | . 2 ⊢ 𝑥 ∈ ∪ WUni |
| 11 | 1, 10 | mpgbir 1800 | 1 ⊢ ∪ WUni = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 {csn 4575 ∪ cuni 4858 WUnicwun 10598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-wun 10600 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |