MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwun Structured version   Visualization version   GIF version

Theorem uniwun 10151
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10246 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10246. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
uniwun WUni = V

Proof of Theorem uniwun
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3449 . 2 ( WUni = V ↔ ∀𝑥 𝑥 WUni)
2 snex 5297 . . . 4 {𝑥} ∈ V
3 wunex 10150 . . . 4 ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
42, 3ax-mp 5 . . 3 𝑢 ∈ WUni {𝑥} ⊆ 𝑢
5 eluni2 4804 . . . 4 (𝑥 WUni ↔ ∃𝑢 ∈ WUni 𝑥𝑢)
6 vex 3444 . . . . . 6 𝑥 ∈ V
76snss 4679 . . . . 5 (𝑥𝑢 ↔ {𝑥} ⊆ 𝑢)
87rexbii 3210 . . . 4 (∃𝑢 ∈ WUni 𝑥𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
95, 8bitri 278 . . 3 (𝑥 WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢)
104, 9mpbir 234 . 2 𝑥 WUni
111, 10mpgbir 1801 1 WUni = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  {csn 4525   cuni 4800  WUnicwun 10111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-wun 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator