![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniwun | Structured version Visualization version GIF version |
Description: Every set is contained in a weak universe. This is the analogue of grothtsk 10827 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10827. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
uniwun | ⊢ ∪ WUni = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3475 | . 2 ⊢ (∪ WUni = V ↔ ∀𝑥 𝑥 ∈ ∪ WUni) | |
2 | vsnex 5420 | . . . 4 ⊢ {𝑥} ∈ V | |
3 | wunex 10731 | . . . 4 ⊢ ({𝑥} ∈ V → ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢 |
5 | eluni2 4904 | . . . 4 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni 𝑥 ∈ 𝑢) | |
6 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | snss 4782 | . . . . 5 ⊢ (𝑥 ∈ 𝑢 ↔ {𝑥} ⊆ 𝑢) |
8 | 7 | rexbii 3086 | . . . 4 ⊢ (∃𝑢 ∈ WUni 𝑥 ∈ 𝑢 ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ∪ WUni ↔ ∃𝑢 ∈ WUni {𝑥} ⊆ 𝑢) |
10 | 4, 9 | mpbir 230 | . 2 ⊢ 𝑥 ∈ ∪ WUni |
11 | 1, 10 | mpgbir 1793 | 1 ⊢ ∪ WUni = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 ⊆ wss 3941 {csn 4621 ∪ cuni 4900 WUnicwun 10692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-wun 10694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |