Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac10b | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 9760). (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
dfac10b | ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3427 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elima 5952 | . . . 4 ⊢ (𝑥 ∈ ( ≈ “ On) ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝑥) |
3 | 2 | bicomi 227 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ 𝑥 ∈ ( ≈ “ On)) |
4 | 3 | albii 1827 | . 2 ⊢ (∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) |
5 | dfac10c 9782 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥) | |
6 | eqv 3432 | . 2 ⊢ (( ≈ “ On) = V ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) | |
7 | 4, 5, 6 | 3bitr4i 306 | 1 ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∀wal 1541 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 Vcvv 3423 class class class wbr 5070 “ cima 5572 Oncon0 6234 ≈ cen 8647 CHOICEwac 9759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-wrecs 8071 df-recs 8132 df-en 8651 df-card 9585 df-ac 9760 |
This theorem is referenced by: axac10 40606 |
Copyright terms: Public domain | W3C validator |