MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac10b Structured version   Visualization version   GIF version

Theorem dfac10b 9783
Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 9760). (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
dfac10b (CHOICE ↔ ( ≈ “ On) = V)

Proof of Theorem dfac10b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3427 . . . . 5 𝑥 ∈ V
21elima 5952 . . . 4 (𝑥 ∈ ( ≈ “ On) ↔ ∃𝑦 ∈ On 𝑦𝑥)
32bicomi 227 . . 3 (∃𝑦 ∈ On 𝑦𝑥𝑥 ∈ ( ≈ “ On))
43albii 1827 . 2 (∀𝑥𝑦 ∈ On 𝑦𝑥 ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On))
5 dfac10c 9782 . 2 (CHOICE ↔ ∀𝑥𝑦 ∈ On 𝑦𝑥)
6 eqv 3432 . 2 (( ≈ “ On) = V ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On))
74, 5, 63bitr4i 306 1 (CHOICE ↔ ( ≈ “ On) = V)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1541   = wceq 1543  wcel 2112  wrex 3065  Vcvv 3423   class class class wbr 5070  cima 5572  Oncon0 6234  cen 8647  CHOICEwac 9759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-se 5528  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-isom 6410  df-riota 7192  df-wrecs 8071  df-recs 8132  df-en 8651  df-card 9585  df-ac 9760
This theorem is referenced by:  axac10  40606
  Copyright terms: Public domain W3C validator