![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac10b | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 10147). (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
dfac10b | ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elima 6073 | . . . 4 ⊢ (𝑥 ∈ ( ≈ “ On) ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝑥) |
3 | 2 | bicomi 223 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ 𝑥 ∈ ( ≈ “ On)) |
4 | 3 | albii 1813 | . 2 ⊢ (∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) |
5 | dfac10c 10169 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥) | |
6 | eqv 3482 | . 2 ⊢ (( ≈ “ On) = V ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 Vcvv 3473 class class class wbr 5152 “ cima 5685 Oncon0 6374 ≈ cen 8967 CHOICEwac 10146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-en 8971 df-card 9970 df-ac 10147 |
This theorem is referenced by: axac10 42485 |
Copyright terms: Public domain | W3C validator |