| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac10b | Structured version Visualization version GIF version | ||
| Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 10029). (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfac10b | ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elima 6020 | . . . 4 ⊢ (𝑥 ∈ ( ≈ “ On) ↔ ∃𝑦 ∈ On 𝑦 ≈ 𝑥) |
| 3 | 2 | bicomi 224 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ 𝑥 ∈ ( ≈ “ On)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) |
| 5 | dfac10c 10052 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥) | |
| 6 | eqv 3448 | . 2 ⊢ (( ≈ “ On) = V ↔ ∀𝑥 𝑥 ∈ ( ≈ “ On)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (CHOICE ↔ ( ≈ “ On) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 class class class wbr 5095 “ cima 5626 Oncon0 6311 ≈ cen 8876 CHOICEwac 10028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-en 8880 df-card 9854 df-ac 10029 |
| This theorem is referenced by: axac10 43006 |
| Copyright terms: Public domain | W3C validator |