MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5888
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3460 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1969 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3454 . . . . . . 7 𝑦 ∈ V
43ideq 5819 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2018 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 275 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1848 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 231 . . 3 𝑦 𝑥 I 𝑦
9 vex 3454 . . . 4 𝑥 ∈ V
109eldm 5867 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 231 . 2 𝑥 ∈ dom I
121, 11mpgbir 1799 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110   I cid 5535  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-dm 5651
This theorem is referenced by:  dmv  5889  dmresi  6026  idfn  6649  iprc  7890
  Copyright terms: Public domain W3C validator