![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmi | Structured version Visualization version GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3488 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | ax6ev 1967 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 3482 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 5866 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 2015 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1845 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 3482 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 5914 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 231 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1796 | 1 ⊢ dom I = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 I cid 5582 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-dm 5699 |
This theorem is referenced by: dmv 5936 dmresi 6072 idfn 6697 iprc 7934 |
Copyright terms: Public domain | W3C validator |