Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmi | Structured version Visualization version GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3440 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | ax6ev 1977 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 3435 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 5760 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 2025 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 274 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1854 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 3435 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 5808 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 230 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1806 | 1 ⊢ dom I = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 I cid 5489 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-dm 5600 |
This theorem is referenced by: dmv 5830 dmresi 5960 idfn 6558 iprc 7754 |
Copyright terms: Public domain | W3C validator |