MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5919
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3483 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1973 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3478 . . . . . . 7 𝑦 ∈ V
43ideq 5850 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2021 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 274 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1850 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 230 . . 3 𝑦 𝑥 I 𝑦
9 vex 3478 . . . 4 𝑥 ∈ V
109eldm 5898 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 230 . 2 𝑥 ∈ dom I
121, 11mpgbir 1801 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474   class class class wbr 5147   I cid 5572  dom cdm 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-dm 5685
This theorem is referenced by:  dmv  5920  dmresi  6049  idfn  6675  iprc  7900
  Copyright terms: Public domain W3C validator