MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5819
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3431 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1974 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3426 . . . . . . 7 𝑦 ∈ V
43ideq 5750 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2022 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 274 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1851 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 230 . . 3 𝑦 𝑥 I 𝑦
9 vex 3426 . . . 4 𝑥 ∈ V
109eldm 5798 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 230 . 2 𝑥 ∈ dom I
121, 11mpgbir 1803 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422   class class class wbr 5070   I cid 5479  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-dm 5590
This theorem is referenced by:  dmv  5820  dmresi  5950  idfn  6544  iprc  7734
  Copyright terms: Public domain W3C validator