| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmi | Structured version Visualization version GIF version | ||
| Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmi | ⊢ dom I = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv 3448 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
| 2 | ax6ev 1970 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 3 | vex 3442 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq 5799 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 5 | equcom 2019 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
| 7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
| 8 | 2, 7 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
| 9 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 10 | 9 | eldm 5847 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
| 11 | 8, 10 | mpbir 231 | . 2 ⊢ 𝑥 ∈ dom I |
| 12 | 1, 11 | mpgbir 1800 | 1 ⊢ dom I = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3438 class class class wbr 5095 I cid 5515 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-dm 5631 |
| This theorem is referenced by: dmv 5869 dmresi 6008 idfn 6617 iprc 7850 dfsucmap3 38486 dfsucmap2 38487 |
| Copyright terms: Public domain | W3C validator |