MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5829
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3440 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1977 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3435 . . . . . . 7 𝑦 ∈ V
43ideq 5760 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2025 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 274 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1854 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 230 . . 3 𝑦 𝑥 I 𝑦
9 vex 3435 . . . 4 𝑥 ∈ V
109eldm 5808 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 230 . 2 𝑥 ∈ dom I
121, 11mpgbir 1806 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wex 1786  wcel 2110  Vcvv 3431   class class class wbr 5079   I cid 5489  dom cdm 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-dm 5600
This theorem is referenced by:  dmv  5830  dmresi  5960  idfn  6558  iprc  7754
  Copyright terms: Public domain W3C validator