MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5885
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3457 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1969 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3451 . . . . . . 7 𝑦 ∈ V
43ideq 5816 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2018 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 275 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1848 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 231 . . 3 𝑦 𝑥 I 𝑦
9 vex 3451 . . . 4 𝑥 ∈ V
109eldm 5864 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 231 . 2 𝑥 ∈ dom I
121, 11mpgbir 1799 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447   class class class wbr 5107   I cid 5532  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-dm 5648
This theorem is referenced by:  dmv  5886  dmresi  6023  idfn  6646  iprc  7887
  Copyright terms: Public domain W3C validator