MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5946
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3498 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1969 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3492 . . . . . . 7 𝑦 ∈ V
43ideq 5877 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2017 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 275 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1846 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 231 . . 3 𝑦 𝑥 I 𝑦
9 vex 3492 . . . 4 𝑥 ∈ V
109eldm 5925 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 231 . 2 𝑥 ∈ dom I
121, 11mpgbir 1797 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488   class class class wbr 5166   I cid 5592  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-dm 5710
This theorem is referenced by:  dmv  5947  dmresi  6081  idfn  6708  iprc  7951
  Copyright terms: Public domain W3C validator