MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmi Structured version   Visualization version   GIF version

Theorem dmi 5830
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3441 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 ax6ev 1973 . . . 4 𝑦 𝑦 = 𝑥
3 vex 3436 . . . . . . 7 𝑦 ∈ V
43ideq 5761 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 2021 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 274 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1850 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 230 . . 3 𝑦 𝑥 I 𝑦
9 vex 3436 . . . 4 𝑥 ∈ V
109eldm 5809 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 230 . 2 𝑥 ∈ dom I
121, 11mpgbir 1802 1 dom I = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074   I cid 5488  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-dm 5599
This theorem is referenced by:  dmv  5831  dmresi  5961  idfn  6560  iprc  7760
  Copyright terms: Public domain W3C validator