Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Visualization version   GIF version

Theorem ttac 40561
Description: Tarski's theorem about choice: infxpidm 10176 is equivalent to ax-ac 10073. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))

Proof of Theorem ttac
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfac10 9751 . 2 (CHOICE ↔ dom card = V)
2 vex 3412 . . . . . 6 𝑐 ∈ V
3 eleq2 2826 . . . . . 6 (dom card = V → (𝑐 ∈ dom card ↔ 𝑐 ∈ V))
42, 3mpbiri 261 . . . . 5 (dom card = V → 𝑐 ∈ dom card)
5 infxpidm2 9631 . . . . . 6 ((𝑐 ∈ dom card ∧ ω ≼ 𝑐) → (𝑐 × 𝑐) ≈ 𝑐)
65ex 416 . . . . 5 (𝑐 ∈ dom card → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
74, 6syl 17 . . . 4 (dom card = V → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
87alrimiv 1935 . . 3 (dom card = V → ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
9 finnum 9564 . . . . . . 7 (𝑎 ∈ Fin → 𝑎 ∈ dom card)
109adantl 485 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
11 harcl 9175 . . . . . . . . 9 (har‘𝑎) ∈ On
12 onenon 9565 . . . . . . . . 9 ((har‘𝑎) ∈ On → (har‘𝑎) ∈ dom card)
1311, 12ax-mp 5 . . . . . . . 8 (har‘𝑎) ∈ dom card
14 fvex 6730 . . . . . . . . . . . . . 14 (har‘𝑎) ∈ V
15 vex 3412 . . . . . . . . . . . . . 14 𝑎 ∈ V
1614, 15unex 7531 . . . . . . . . . . . . 13 ((har‘𝑎) ∪ 𝑎) ∈ V
17 harinf 40559 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ⊆ (har‘𝑎))
1815, 17mpan 690 . . . . . . . . . . . . . 14 𝑎 ∈ Fin → ω ⊆ (har‘𝑎))
19 ssun1 4086 . . . . . . . . . . . . . 14 (har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎)
2018, 19sstrdi 3913 . . . . . . . . . . . . 13 𝑎 ∈ Fin → ω ⊆ ((har‘𝑎) ∪ 𝑎))
21 ssdomg 8674 . . . . . . . . . . . . 13 (((har‘𝑎) ∪ 𝑎) ∈ V → (ω ⊆ ((har‘𝑎) ∪ 𝑎) → ω ≼ ((har‘𝑎) ∪ 𝑎)))
2216, 20, 21mpsyl 68 . . . . . . . . . . . 12 𝑎 ∈ Fin → ω ≼ ((har‘𝑎) ∪ 𝑎))
23 breq2 5057 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (ω ≼ 𝑐 ↔ ω ≼ ((har‘𝑎) ∪ 𝑎)))
24 xpeq12 5576 . . . . . . . . . . . . . . . 16 ((𝑐 = ((har‘𝑎) ∪ 𝑎) ∧ 𝑐 = ((har‘𝑎) ∪ 𝑎)) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
2524anidms 570 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
26 id 22 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → 𝑐 = ((har‘𝑎) ∪ 𝑎))
2725, 26breq12d 5066 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((𝑐 × 𝑐) ≈ 𝑐 ↔ (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
2823, 27imbi12d 348 . . . . . . . . . . . . 13 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ↔ (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))))
2916, 28spcv 3520 . . . . . . . . . . . 12 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3022, 29syl5 34 . . . . . . . . . . 11 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (¬ 𝑎 ∈ Fin → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3130imp 410 . . . . . . . . . 10 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))
32 harndom 9178 . . . . . . . . . . . 12 ¬ (har‘𝑎) ≼ 𝑎
33 ssdomg 8674 . . . . . . . . . . . . . 14 (((har‘𝑎) ∪ 𝑎) ∈ V → ((har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎) → (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)))
3416, 19, 33mp2 9 . . . . . . . . . . . . 13 (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)
35 domtr 8681 . . . . . . . . . . . . 13 (((har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎) ∧ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → (har‘𝑎) ≼ 𝑎)
3634, 35mpan 690 . . . . . . . . . . . 12 (((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → (har‘𝑎) ≼ 𝑎)
3732, 36mto 200 . . . . . . . . . . 11 ¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎
38 unxpwdom2 9204 . . . . . . . . . . 11 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎))
39 orel2 891 . . . . . . . . . . 11 (¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → ((((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎)))
4037, 38, 39mpsyl 68 . . . . . . . . . 10 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
4131, 40syl 17 . . . . . . . . 9 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
42 wdomnumr 9678 . . . . . . . . . 10 ((har‘𝑎) ∈ dom card → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)))
4313, 42ax-mp 5 . . . . . . . . 9 (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
4441, 43sylib 221 . . . . . . . 8 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
45 numdom 9652 . . . . . . . 8 (((har‘𝑎) ∈ dom card ∧ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
4613, 44, 45sylancr 590 . . . . . . 7 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
47 ssun2 4087 . . . . . . 7 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)
48 ssnum 9653 . . . . . . 7 ((((har‘𝑎) ∪ 𝑎) ∈ dom card ∧ 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)) → 𝑎 ∈ dom card)
4946, 47, 48sylancl 589 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
5010, 49pm2.61dan 813 . . . . 5 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → 𝑎 ∈ dom card)
5150alrimiv 1935 . . . 4 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → ∀𝑎 𝑎 ∈ dom card)
52 eqv 3417 . . . 4 (dom card = V ↔ ∀𝑎 𝑎 ∈ dom card)
5351, 52sylibr 237 . . 3 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → dom card = V)
548, 53impbii 212 . 2 (dom card = V ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
551, 54bitri 278 1 (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  wss 3866   class class class wbr 5053   × cxp 5549  dom cdm 5551  Oncon0 6213  cfv 6380  ωcom 7644  cen 8623  cdom 8624  Fincfn 8626  harchar 9172  * cwdom 9180  cardccrd 9551  CHOICEwac 9729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-har 9173  df-wdom 9181  df-card 9555  df-acn 9558  df-ac 9730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator