Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Visualization version   GIF version

Theorem ttac 42993
Description: Tarski's theorem about choice: infxpidm 10631 is equivalent to ax-ac 10528. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))

Proof of Theorem ttac
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfac10 10207 . 2 (CHOICE ↔ dom card = V)
2 vex 3492 . . . . . 6 𝑐 ∈ V
3 eleq2 2833 . . . . . 6 (dom card = V → (𝑐 ∈ dom card ↔ 𝑐 ∈ V))
42, 3mpbiri 258 . . . . 5 (dom card = V → 𝑐 ∈ dom card)
5 infxpidm2 10086 . . . . . 6 ((𝑐 ∈ dom card ∧ ω ≼ 𝑐) → (𝑐 × 𝑐) ≈ 𝑐)
65ex 412 . . . . 5 (𝑐 ∈ dom card → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
74, 6syl 17 . . . 4 (dom card = V → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
87alrimiv 1926 . . 3 (dom card = V → ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
9 finnum 10017 . . . . . . 7 (𝑎 ∈ Fin → 𝑎 ∈ dom card)
109adantl 481 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
11 harcl 9628 . . . . . . . . 9 (har‘𝑎) ∈ On
12 onenon 10018 . . . . . . . . 9 ((har‘𝑎) ∈ On → (har‘𝑎) ∈ dom card)
1311, 12ax-mp 5 . . . . . . . 8 (har‘𝑎) ∈ dom card
14 fvex 6933 . . . . . . . . . . . . . 14 (har‘𝑎) ∈ V
15 vex 3492 . . . . . . . . . . . . . 14 𝑎 ∈ V
1614, 15unex 7779 . . . . . . . . . . . . 13 ((har‘𝑎) ∪ 𝑎) ∈ V
17 harinf 42991 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ⊆ (har‘𝑎))
1815, 17mpan 689 . . . . . . . . . . . . . 14 𝑎 ∈ Fin → ω ⊆ (har‘𝑎))
19 ssun1 4201 . . . . . . . . . . . . . 14 (har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎)
2018, 19sstrdi 4021 . . . . . . . . . . . . 13 𝑎 ∈ Fin → ω ⊆ ((har‘𝑎) ∪ 𝑎))
21 ssdomg 9060 . . . . . . . . . . . . 13 (((har‘𝑎) ∪ 𝑎) ∈ V → (ω ⊆ ((har‘𝑎) ∪ 𝑎) → ω ≼ ((har‘𝑎) ∪ 𝑎)))
2216, 20, 21mpsyl 68 . . . . . . . . . . . 12 𝑎 ∈ Fin → ω ≼ ((har‘𝑎) ∪ 𝑎))
23 breq2 5170 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (ω ≼ 𝑐 ↔ ω ≼ ((har‘𝑎) ∪ 𝑎)))
24 xpeq12 5725 . . . . . . . . . . . . . . . 16 ((𝑐 = ((har‘𝑎) ∪ 𝑎) ∧ 𝑐 = ((har‘𝑎) ∪ 𝑎)) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
2524anidms 566 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
26 id 22 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → 𝑐 = ((har‘𝑎) ∪ 𝑎))
2725, 26breq12d 5179 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((𝑐 × 𝑐) ≈ 𝑐 ↔ (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
2823, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ↔ (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))))
2916, 28spcv 3618 . . . . . . . . . . . 12 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3022, 29syl5 34 . . . . . . . . . . 11 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (¬ 𝑎 ∈ Fin → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3130imp 406 . . . . . . . . . 10 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))
32 harndom 9631 . . . . . . . . . . . 12 ¬ (har‘𝑎) ≼ 𝑎
33 ssdomg 9060 . . . . . . . . . . . . . 14 (((har‘𝑎) ∪ 𝑎) ∈ V → ((har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎) → (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)))
3416, 19, 33mp2 9 . . . . . . . . . . . . 13 (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)
35 domtr 9067 . . . . . . . . . . . . 13 (((har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎) ∧ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → (har‘𝑎) ≼ 𝑎)
3634, 35mpan 689 . . . . . . . . . . . 12 (((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → (har‘𝑎) ≼ 𝑎)
3732, 36mto 197 . . . . . . . . . . 11 ¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎
38 unxpwdom2 9657 . . . . . . . . . . 11 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎))
39 orel2 889 . . . . . . . . . . 11 (¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → ((((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎)))
4037, 38, 39mpsyl 68 . . . . . . . . . 10 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
4131, 40syl 17 . . . . . . . . 9 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
42 wdomnumr 10133 . . . . . . . . . 10 ((har‘𝑎) ∈ dom card → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)))
4313, 42ax-mp 5 . . . . . . . . 9 (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
4441, 43sylib 218 . . . . . . . 8 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
45 numdom 10107 . . . . . . . 8 (((har‘𝑎) ∈ dom card ∧ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
4613, 44, 45sylancr 586 . . . . . . 7 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
47 ssun2 4202 . . . . . . 7 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)
48 ssnum 10108 . . . . . . 7 ((((har‘𝑎) ∪ 𝑎) ∈ dom card ∧ 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)) → 𝑎 ∈ dom card)
4946, 47, 48sylancl 585 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
5010, 49pm2.61dan 812 . . . . 5 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → 𝑎 ∈ dom card)
5150alrimiv 1926 . . . 4 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → ∀𝑎 𝑎 ∈ dom card)
52 eqv 3498 . . . 4 (dom card = V ↔ ∀𝑎 𝑎 ∈ dom card)
5351, 52sylibr 234 . . 3 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → dom card = V)
548, 53impbii 209 . 2 (dom card = V ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
551, 54bitri 275 1 (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  Oncon0 6395  cfv 6573  ωcom 7903  cen 9000  cdom 9001  Fincfn 9003  harchar 9625  * cwdom 9633  cardccrd 10004  CHOICEwac 10184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-wdom 9634  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator