Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Visualization version   GIF version

Theorem ttac 39640
Description: Tarski's theorem about choice: infxpidm 9986 is equivalent to ax-ac 9883. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))

Proof of Theorem ttac
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfac10 9565 . 2 (CHOICE ↔ dom card = V)
2 vex 3499 . . . . . 6 𝑐 ∈ V
3 eleq2 2903 . . . . . 6 (dom card = V → (𝑐 ∈ dom card ↔ 𝑐 ∈ V))
42, 3mpbiri 260 . . . . 5 (dom card = V → 𝑐 ∈ dom card)
5 infxpidm2 9445 . . . . . 6 ((𝑐 ∈ dom card ∧ ω ≼ 𝑐) → (𝑐 × 𝑐) ≈ 𝑐)
65ex 415 . . . . 5 (𝑐 ∈ dom card → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
74, 6syl 17 . . . 4 (dom card = V → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
87alrimiv 1928 . . 3 (dom card = V → ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
9 finnum 9379 . . . . . . 7 (𝑎 ∈ Fin → 𝑎 ∈ dom card)
109adantl 484 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
11 harcl 9027 . . . . . . . . 9 (har‘𝑎) ∈ On
12 onenon 9380 . . . . . . . . 9 ((har‘𝑎) ∈ On → (har‘𝑎) ∈ dom card)
1311, 12ax-mp 5 . . . . . . . 8 (har‘𝑎) ∈ dom card
14 fvex 6685 . . . . . . . . . . . . . 14 (har‘𝑎) ∈ V
15 vex 3499 . . . . . . . . . . . . . 14 𝑎 ∈ V
1614, 15unex 7471 . . . . . . . . . . . . 13 ((har‘𝑎) ∪ 𝑎) ∈ V
17 harinf 39638 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ⊆ (har‘𝑎))
1815, 17mpan 688 . . . . . . . . . . . . . 14 𝑎 ∈ Fin → ω ⊆ (har‘𝑎))
19 ssun1 4150 . . . . . . . . . . . . . 14 (har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎)
2018, 19sstrdi 3981 . . . . . . . . . . . . 13 𝑎 ∈ Fin → ω ⊆ ((har‘𝑎) ∪ 𝑎))
21 ssdomg 8557 . . . . . . . . . . . . 13 (((har‘𝑎) ∪ 𝑎) ∈ V → (ω ⊆ ((har‘𝑎) ∪ 𝑎) → ω ≼ ((har‘𝑎) ∪ 𝑎)))
2216, 20, 21mpsyl 68 . . . . . . . . . . . 12 𝑎 ∈ Fin → ω ≼ ((har‘𝑎) ∪ 𝑎))
23 breq2 5072 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (ω ≼ 𝑐 ↔ ω ≼ ((har‘𝑎) ∪ 𝑎)))
24 xpeq12 5582 . . . . . . . . . . . . . . . 16 ((𝑐 = ((har‘𝑎) ∪ 𝑎) ∧ 𝑐 = ((har‘𝑎) ∪ 𝑎)) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
2524anidms 569 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
26 id 22 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → 𝑐 = ((har‘𝑎) ∪ 𝑎))
2725, 26breq12d 5081 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((𝑐 × 𝑐) ≈ 𝑐 ↔ (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
2823, 27imbi12d 347 . . . . . . . . . . . . 13 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ↔ (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))))
2916, 28spcv 3608 . . . . . . . . . . . 12 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3022, 29syl5 34 . . . . . . . . . . 11 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (¬ 𝑎 ∈ Fin → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3130imp 409 . . . . . . . . . 10 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))
32 harndom 9030 . . . . . . . . . . . 12 ¬ (har‘𝑎) ≼ 𝑎
33 ssdomg 8557 . . . . . . . . . . . . . 14 (((har‘𝑎) ∪ 𝑎) ∈ V → ((har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎) → (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)))
3416, 19, 33mp2 9 . . . . . . . . . . . . 13 (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)
35 domtr 8564 . . . . . . . . . . . . 13 (((har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎) ∧ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → (har‘𝑎) ≼ 𝑎)
3634, 35mpan 688 . . . . . . . . . . . 12 (((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → (har‘𝑎) ≼ 𝑎)
3732, 36mto 199 . . . . . . . . . . 11 ¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎
38 unxpwdom2 9054 . . . . . . . . . . 11 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎))
39 orel2 887 . . . . . . . . . . 11 (¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → ((((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎)))
4037, 38, 39mpsyl 68 . . . . . . . . . 10 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
4131, 40syl 17 . . . . . . . . 9 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
42 wdomnumr 9492 . . . . . . . . . 10 ((har‘𝑎) ∈ dom card → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)))
4313, 42ax-mp 5 . . . . . . . . 9 (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
4441, 43sylib 220 . . . . . . . 8 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
45 numdom 9466 . . . . . . . 8 (((har‘𝑎) ∈ dom card ∧ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
4613, 44, 45sylancr 589 . . . . . . 7 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
47 ssun2 4151 . . . . . . 7 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)
48 ssnum 9467 . . . . . . 7 ((((har‘𝑎) ∪ 𝑎) ∈ dom card ∧ 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)) → 𝑎 ∈ dom card)
4946, 47, 48sylancl 588 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
5010, 49pm2.61dan 811 . . . . 5 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → 𝑎 ∈ dom card)
5150alrimiv 1928 . . . 4 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → ∀𝑎 𝑎 ∈ dom card)
52 eqv 3504 . . . 4 (dom card = V ↔ ∀𝑎 𝑎 ∈ dom card)
5351, 52sylibr 236 . . 3 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → dom card = V)
548, 53impbii 211 . 2 (dom card = V ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
551, 54bitri 277 1 (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1535   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  wss 3938   class class class wbr 5068   × cxp 5555  dom cdm 5557  Oncon0 6193  cfv 6357  ωcom 7582  cen 8508  cdom 8509  Fincfn 8511  harchar 9022  * cwdom 9023  cardccrd 9366  CHOICEwac 9543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-har 9024  df-wdom 9025  df-card 9370  df-acn 9373  df-ac 9544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator