Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Visualization version   GIF version

Theorem ttac 43025
Description: Tarski's theorem about choice: infxpidm 10515 is equivalent to ax-ac 10412. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))

Proof of Theorem ttac
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfac10 10091 . 2 (CHOICE ↔ dom card = V)
2 vex 3451 . . . . . 6 𝑐 ∈ V
3 eleq2 2817 . . . . . 6 (dom card = V → (𝑐 ∈ dom card ↔ 𝑐 ∈ V))
42, 3mpbiri 258 . . . . 5 (dom card = V → 𝑐 ∈ dom card)
5 infxpidm2 9970 . . . . . 6 ((𝑐 ∈ dom card ∧ ω ≼ 𝑐) → (𝑐 × 𝑐) ≈ 𝑐)
65ex 412 . . . . 5 (𝑐 ∈ dom card → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
74, 6syl 17 . . . 4 (dom card = V → (ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
87alrimiv 1927 . . 3 (dom card = V → ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
9 finnum 9901 . . . . . . 7 (𝑎 ∈ Fin → 𝑎 ∈ dom card)
109adantl 481 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
11 harcl 9512 . . . . . . . . 9 (har‘𝑎) ∈ On
12 onenon 9902 . . . . . . . . 9 ((har‘𝑎) ∈ On → (har‘𝑎) ∈ dom card)
1311, 12ax-mp 5 . . . . . . . 8 (har‘𝑎) ∈ dom card
14 fvex 6871 . . . . . . . . . . . . . 14 (har‘𝑎) ∈ V
15 vex 3451 . . . . . . . . . . . . . 14 𝑎 ∈ V
1614, 15unex 7720 . . . . . . . . . . . . 13 ((har‘𝑎) ∪ 𝑎) ∈ V
17 harinf 43023 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ⊆ (har‘𝑎))
1815, 17mpan 690 . . . . . . . . . . . . . 14 𝑎 ∈ Fin → ω ⊆ (har‘𝑎))
19 ssun1 4141 . . . . . . . . . . . . . 14 (har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎)
2018, 19sstrdi 3959 . . . . . . . . . . . . 13 𝑎 ∈ Fin → ω ⊆ ((har‘𝑎) ∪ 𝑎))
21 ssdomg 8971 . . . . . . . . . . . . 13 (((har‘𝑎) ∪ 𝑎) ∈ V → (ω ⊆ ((har‘𝑎) ∪ 𝑎) → ω ≼ ((har‘𝑎) ∪ 𝑎)))
2216, 20, 21mpsyl 68 . . . . . . . . . . . 12 𝑎 ∈ Fin → ω ≼ ((har‘𝑎) ∪ 𝑎))
23 breq2 5111 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (ω ≼ 𝑐 ↔ ω ≼ ((har‘𝑎) ∪ 𝑎)))
24 xpeq12 5663 . . . . . . . . . . . . . . . 16 ((𝑐 = ((har‘𝑎) ∪ 𝑎) ∧ 𝑐 = ((har‘𝑎) ∪ 𝑎)) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
2524anidms 566 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → (𝑐 × 𝑐) = (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)))
26 id 22 . . . . . . . . . . . . . . 15 (𝑐 = ((har‘𝑎) ∪ 𝑎) → 𝑐 = ((har‘𝑎) ∪ 𝑎))
2725, 26breq12d 5120 . . . . . . . . . . . . . 14 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((𝑐 × 𝑐) ≈ 𝑐 ↔ (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
2823, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑐 = ((har‘𝑎) ∪ 𝑎) → ((ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ↔ (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))))
2916, 28spcv 3571 . . . . . . . . . . . 12 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (ω ≼ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3022, 29syl5 34 . . . . . . . . . . 11 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → (¬ 𝑎 ∈ Fin → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎)))
3130imp 406 . . . . . . . . . 10 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → (((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎))
32 harndom 9515 . . . . . . . . . . . 12 ¬ (har‘𝑎) ≼ 𝑎
33 ssdomg 8971 . . . . . . . . . . . . . 14 (((har‘𝑎) ∪ 𝑎) ∈ V → ((har‘𝑎) ⊆ ((har‘𝑎) ∪ 𝑎) → (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)))
3416, 19, 33mp2 9 . . . . . . . . . . . . 13 (har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎)
35 domtr 8978 . . . . . . . . . . . . 13 (((har‘𝑎) ≼ ((har‘𝑎) ∪ 𝑎) ∧ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → (har‘𝑎) ≼ 𝑎)
3634, 35mpan 690 . . . . . . . . . . . 12 (((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → (har‘𝑎) ≼ 𝑎)
3732, 36mto 197 . . . . . . . . . . 11 ¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎
38 unxpwdom2 9541 . . . . . . . . . . 11 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎))
39 orel2 890 . . . . . . . . . . 11 (¬ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎 → ((((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ∨ ((har‘𝑎) ∪ 𝑎) ≼ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎)))
4037, 38, 39mpsyl 68 . . . . . . . . . 10 ((((har‘𝑎) ∪ 𝑎) × ((har‘𝑎) ∪ 𝑎)) ≈ ((har‘𝑎) ∪ 𝑎) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
4131, 40syl 17 . . . . . . . . 9 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎))
42 wdomnumr 10017 . . . . . . . . . 10 ((har‘𝑎) ∈ dom card → (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)))
4313, 42ax-mp 5 . . . . . . . . 9 (((har‘𝑎) ∪ 𝑎) ≼* (har‘𝑎) ↔ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
4441, 43sylib 218 . . . . . . . 8 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎))
45 numdom 9991 . . . . . . . 8 (((har‘𝑎) ∈ dom card ∧ ((har‘𝑎) ∪ 𝑎) ≼ (har‘𝑎)) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
4613, 44, 45sylancr 587 . . . . . . 7 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → ((har‘𝑎) ∪ 𝑎) ∈ dom card)
47 ssun2 4142 . . . . . . 7 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)
48 ssnum 9992 . . . . . . 7 ((((har‘𝑎) ∪ 𝑎) ∈ dom card ∧ 𝑎 ⊆ ((har‘𝑎) ∪ 𝑎)) → 𝑎 ∈ dom card)
4946, 47, 48sylancl 586 . . . . . 6 ((∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) ∧ ¬ 𝑎 ∈ Fin) → 𝑎 ∈ dom card)
5010, 49pm2.61dan 812 . . . . 5 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → 𝑎 ∈ dom card)
5150alrimiv 1927 . . . 4 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → ∀𝑎 𝑎 ∈ dom card)
52 eqv 3457 . . . 4 (dom card = V ↔ ∀𝑎 𝑎 ∈ dom card)
5351, 52sylibr 234 . . 3 (∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐) → dom card = V)
548, 53impbii 209 . 2 (dom card = V ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
551, 54bitri 275 1 (CHOICE ↔ ∀𝑐(ω ≼ 𝑐 → (𝑐 × 𝑐) ≈ 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  wss 3914   class class class wbr 5107   × cxp 5636  dom cdm 5638  Oncon0 6332  cfv 6511  ωcom 7842  cen 8915  cdom 8916  Fincfn 8918  harchar 9509  * cwdom 9517  cardccrd 9888  CHOICEwac 10068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-wdom 9518  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator