| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euop2 | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| euop2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| euop2 | ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5402 | . 2 ⊢ 〈𝐴, 𝑦〉 ∈ V | |
| 2 | euop2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | moop2 5440 | . 2 ⊢ ∃*𝑦 𝑥 = 〈𝐴, 𝑦〉 |
| 4 | 1, 3 | euxfr2w 3674 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: dfac5lem1 10014 |
| Copyright terms: Public domain | W3C validator |