MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euop2 Structured version   Visualization version   GIF version

Theorem euop2 5420
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.)
Hypothesis
Ref Expression
euop2.1 𝐴 ∈ V
Assertion
Ref Expression
euop2 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euop2
StepHypRef Expression
1 opex 5373 . 2 𝐴, 𝑦⟩ ∈ V
2 euop2.1 . . 3 𝐴 ∈ V
32moop2 5410 . 2 ∃*𝑦 𝑥 = ⟨𝐴, 𝑦
41, 3euxfr2w 3650 1 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  Vcvv 3422  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  dfac5lem1  9810
  Copyright terms: Public domain W3C validator