| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euop2 | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| euop2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| euop2 | ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5444 | . 2 ⊢ 〈𝐴, 𝑦〉 ∈ V | |
| 2 | euop2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | moop2 5482 | . 2 ⊢ ∃*𝑦 𝑥 = 〈𝐴, 𝑦〉 |
| 4 | 1, 3 | euxfr2w 3708 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 Vcvv 3464 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: dfac5lem1 10142 |
| Copyright terms: Public domain | W3C validator |