MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euop2 Structured version   Visualization version   GIF version

Theorem euop2 5531
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.)
Hypothesis
Ref Expression
euop2.1 𝐴 ∈ V
Assertion
Ref Expression
euop2 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euop2
StepHypRef Expression
1 opex 5484 . 2 𝐴, 𝑦⟩ ∈ V
2 euop2.1 . . 3 𝐴 ∈ V
32moop2 5521 . 2 ∃*𝑦 𝑥 = ⟨𝐴, 𝑦
41, 3euxfr2w 3742 1 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  Vcvv 3488  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  dfac5lem1  10192
  Copyright terms: Public domain W3C validator