MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euop2 Structured version   Visualization version   GIF version

Theorem euop2 5395
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.)
Hypothesis
Ref Expression
euop2.1 𝐴 ∈ V
Assertion
Ref Expression
euop2 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euop2
StepHypRef Expression
1 opex 5348 . 2 𝐴, 𝑦⟩ ∈ V
2 euop2.1 . . 3 𝐴 ∈ V
32moop2 5385 . 2 ∃*𝑦 𝑥 = ⟨𝐴, 𝑦
41, 3euxfr2w 3633 1 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  ∃!weu 2567  Vcvv 3408  cop 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548
This theorem is referenced by:  dfac5lem1  9737
  Copyright terms: Public domain W3C validator