Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euop2 | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) |
Ref | Expression |
---|---|
euop2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
euop2 | ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5396 | . 2 ⊢ 〈𝐴, 𝑦〉 ∈ V | |
2 | euop2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | moop2 5433 | . 2 ⊢ ∃*𝑦 𝑥 = 〈𝐴, 𝑦〉 |
4 | 1, 3 | euxfr2w 3664 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃!weu 2567 Vcvv 3441 〈cop 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 |
This theorem is referenced by: dfac5lem1 9949 |
Copyright terms: Public domain | W3C validator |