|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > euop2 | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| euop2.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| euop2 | ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opex 5468 | . 2 ⊢ 〈𝐴, 𝑦〉 ∈ V | |
| 2 | euop2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | moop2 5506 | . 2 ⊢ ∃*𝑦 𝑥 = 〈𝐴, 𝑦〉 | 
| 4 | 1, 3 | euxfr2w 3725 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2567 Vcvv 3479 〈cop 4631 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 | 
| This theorem is referenced by: dfac5lem1 10164 | 
| Copyright terms: Public domain | W3C validator |