MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euop2 Structured version   Visualization version   GIF version

Theorem euop2 5426
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.)
Hypothesis
Ref Expression
euop2.1 𝐴 ∈ V
Assertion
Ref Expression
euop2 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euop2
StepHypRef Expression
1 opex 5379 . 2 𝐴, 𝑦⟩ ∈ V
2 euop2.1 . . 3 𝐴 ∈ V
32moop2 5416 . 2 ∃*𝑦 𝑥 = ⟨𝐴, 𝑦
41, 3euxfr2w 3655 1 (∃!𝑥𝑦(𝑥 = ⟨𝐴, 𝑦⟩ ∧ 𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  Vcvv 3432  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  dfac5lem1  9879
  Copyright terms: Public domain W3C validator