![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euop2 | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) |
Ref | Expression |
---|---|
euop2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
euop2 | ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5475 | . 2 ⊢ 〈𝐴, 𝑦〉 ∈ V | |
2 | euop2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | moop2 5512 | . 2 ⊢ ∃*𝑦 𝑥 = 〈𝐴, 𝑦〉 |
4 | 1, 3 | euxfr2w 3729 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃!weu 2566 Vcvv 3478 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: dfac5lem1 10161 |
Copyright terms: Public domain | W3C validator |