| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47623 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7410 1c1 11135 + caddc 11137 / cdiv 11899 2c2 12300 ℤcz 12593 Odd codd 47619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-odd 47621 |
| This theorem is referenced by: oddm1div2z 47628 oddp1eveni 47635 oddm1eveni 47636 m1expoddALTV 47642 2dvdsoddp1 47650 2dvdsoddm1 47651 zofldiv2ALTV 47656 oddflALTV 47657 gcd2odd1 47662 oexpnegALTV 47671 oexpnegnz 47672 bits0oALTV 47675 opoeALTV 47677 opeoALTV 47678 omoeALTV 47679 omeoALTV 47680 epoo 47697 emoo 47698 stgoldbwt 47770 sbgoldbwt 47771 sbgoldbst 47772 sbgoldbm 47778 bgoldbtbndlem1 47799 bgoldbtbndlem2 47800 bgoldbtbndlem3 47801 bgoldbtbndlem4 47802 bgoldbtbnd 47803 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |