| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47633 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 / cdiv 11796 2c2 12202 ℤcz 12490 Odd codd 47629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-odd 47631 |
| This theorem is referenced by: oddm1div2z 47638 oddp1eveni 47645 oddm1eveni 47646 m1expoddALTV 47652 2dvdsoddp1 47660 2dvdsoddm1 47661 zofldiv2ALTV 47666 oddflALTV 47667 gcd2odd1 47672 oexpnegALTV 47681 oexpnegnz 47682 bits0oALTV 47685 opoeALTV 47687 opeoALTV 47688 omoeALTV 47689 omeoALTV 47690 epoo 47707 emoo 47708 stgoldbwt 47780 sbgoldbwt 47781 sbgoldbst 47782 sbgoldbm 47788 bgoldbtbndlem1 47809 bgoldbtbndlem2 47810 bgoldbtbndlem3 47811 bgoldbtbndlem4 47812 bgoldbtbnd 47813 tgoldbach 47821 |
| Copyright terms: Public domain | W3C validator |