![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version |
Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 47503 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 / cdiv 11947 2c2 12348 ℤcz 12639 Odd codd 47499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-odd 47501 |
This theorem is referenced by: oddm1div2z 47508 oddp1eveni 47515 oddm1eveni 47516 m1expoddALTV 47522 2dvdsoddp1 47530 2dvdsoddm1 47531 zofldiv2ALTV 47536 oddflALTV 47537 gcd2odd1 47542 oexpnegALTV 47551 oexpnegnz 47552 bits0oALTV 47555 opoeALTV 47557 opeoALTV 47558 omoeALTV 47559 omeoALTV 47560 epoo 47577 emoo 47578 stgoldbwt 47650 sbgoldbwt 47651 sbgoldbst 47652 sbgoldbm 47658 bgoldbtbndlem1 47679 bgoldbtbndlem2 47680 bgoldbtbndlem3 47681 bgoldbtbndlem4 47682 bgoldbtbnd 47683 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |