Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version |
Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 45139 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 (class class class)co 7307 1c1 10918 + caddc 10920 / cdiv 11678 2c2 12074 ℤcz 12365 Odd codd 45135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-odd 45137 |
This theorem is referenced by: oddm1div2z 45144 oddp1eveni 45151 oddm1eveni 45152 m1expoddALTV 45158 2dvdsoddp1 45166 2dvdsoddm1 45167 zofldiv2ALTV 45172 oddflALTV 45173 gcd2odd1 45178 oexpnegALTV 45187 oexpnegnz 45188 bits0oALTV 45191 opoeALTV 45193 opeoALTV 45194 omoeALTV 45195 omeoALTV 45196 epoo 45213 emoo 45214 stgoldbwt 45286 sbgoldbwt 45287 sbgoldbst 45288 sbgoldbm 45294 bgoldbtbndlem1 45315 bgoldbtbndlem2 45316 bgoldbtbndlem3 45317 bgoldbtbndlem4 45318 bgoldbtbnd 45319 tgoldbach 45327 |
Copyright terms: Public domain | W3C validator |