![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version |
Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 47554 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7431 1c1 11154 + caddc 11156 / cdiv 11918 2c2 12319 ℤcz 12611 Odd codd 47550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-odd 47552 |
This theorem is referenced by: oddm1div2z 47559 oddp1eveni 47566 oddm1eveni 47567 m1expoddALTV 47573 2dvdsoddp1 47581 2dvdsoddm1 47582 zofldiv2ALTV 47587 oddflALTV 47588 gcd2odd1 47593 oexpnegALTV 47602 oexpnegnz 47603 bits0oALTV 47606 opoeALTV 47608 opeoALTV 47609 omoeALTV 47610 omeoALTV 47611 epoo 47628 emoo 47629 stgoldbwt 47701 sbgoldbwt 47702 sbgoldbst 47703 sbgoldbm 47709 bgoldbtbndlem1 47730 bgoldbtbndlem2 47731 bgoldbtbndlem3 47732 bgoldbtbndlem4 47733 bgoldbtbnd 47734 tgoldbach 47742 |
Copyright terms: Public domain | W3C validator |