Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version |
Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 45033 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7268 1c1 10856 + caddc 10858 / cdiv 11615 2c2 12011 ℤcz 12302 Odd codd 45029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-odd 45031 |
This theorem is referenced by: oddm1div2z 45038 oddp1eveni 45045 oddm1eveni 45046 m1expoddALTV 45052 2dvdsoddp1 45060 2dvdsoddm1 45061 zofldiv2ALTV 45066 oddflALTV 45067 gcd2odd1 45072 oexpnegALTV 45081 oexpnegnz 45082 bits0oALTV 45085 opoeALTV 45087 opeoALTV 45088 omoeALTV 45089 omeoALTV 45090 epoo 45107 emoo 45108 stgoldbwt 45180 sbgoldbwt 45181 sbgoldbst 45182 sbgoldbm 45188 bgoldbtbndlem1 45209 bgoldbtbndlem2 45210 bgoldbtbndlem3 45211 bgoldbtbndlem4 45212 bgoldbtbnd 45213 tgoldbach 45221 |
Copyright terms: Public domain | W3C validator |