| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47660 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 / cdiv 11769 2c2 12175 ℤcz 12463 Odd codd 47656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-odd 47658 |
| This theorem is referenced by: oddm1div2z 47665 oddp1eveni 47672 oddm1eveni 47673 m1expoddALTV 47679 2dvdsoddp1 47687 2dvdsoddm1 47688 zofldiv2ALTV 47693 oddflALTV 47694 gcd2odd1 47699 oexpnegALTV 47708 oexpnegnz 47709 bits0oALTV 47712 opoeALTV 47714 opeoALTV 47715 omoeALTV 47716 omeoALTV 47717 epoo 47734 emoo 47735 stgoldbwt 47807 sbgoldbwt 47808 sbgoldbst 47809 sbgoldbm 47815 bgoldbtbndlem1 47836 bgoldbtbndlem2 47837 bgoldbtbndlem3 47838 bgoldbtbndlem4 47839 bgoldbtbnd 47840 tgoldbach 47848 |
| Copyright terms: Public domain | W3C validator |