Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version |
Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd 45048 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7277 1c1 10870 + caddc 10872 / cdiv 11630 2c2 12026 ℤcz 12317 Odd codd 45044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-iota 6393 df-fv 6443 df-ov 7280 df-odd 45046 |
This theorem is referenced by: oddm1div2z 45053 oddp1eveni 45060 oddm1eveni 45061 m1expoddALTV 45067 2dvdsoddp1 45075 2dvdsoddm1 45076 zofldiv2ALTV 45081 oddflALTV 45082 gcd2odd1 45087 oexpnegALTV 45096 oexpnegnz 45097 bits0oALTV 45100 opoeALTV 45102 opeoALTV 45103 omoeALTV 45104 omeoALTV 45105 epoo 45122 emoo 45123 stgoldbwt 45195 sbgoldbwt 45196 sbgoldbst 45197 sbgoldbm 45203 bgoldbtbndlem1 45224 bgoldbtbndlem2 45225 bgoldbtbndlem3 45226 bgoldbtbndlem4 45227 bgoldbtbnd 45228 tgoldbach 45236 |
Copyright terms: Public domain | W3C validator |