| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47603 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 / cdiv 11811 2c2 12217 ℤcz 12505 Odd codd 47599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-odd 47601 |
| This theorem is referenced by: oddm1div2z 47608 oddp1eveni 47615 oddm1eveni 47616 m1expoddALTV 47622 2dvdsoddp1 47630 2dvdsoddm1 47631 zofldiv2ALTV 47636 oddflALTV 47637 gcd2odd1 47642 oexpnegALTV 47651 oexpnegnz 47652 bits0oALTV 47655 opoeALTV 47657 opeoALTV 47658 omoeALTV 47659 omeoALTV 47660 epoo 47677 emoo 47678 stgoldbwt 47750 sbgoldbwt 47751 sbgoldbst 47752 sbgoldbm 47758 bgoldbtbndlem1 47779 bgoldbtbndlem2 47780 bgoldbtbndlem3 47781 bgoldbtbndlem4 47782 bgoldbtbnd 47783 tgoldbach 47791 |
| Copyright terms: Public domain | W3C validator |