| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47791 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 / cdiv 11785 2c2 12191 ℤcz 12479 Odd codd 47787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-odd 47789 |
| This theorem is referenced by: oddm1div2z 47796 oddp1eveni 47803 oddm1eveni 47804 m1expoddALTV 47810 2dvdsoddp1 47818 2dvdsoddm1 47819 zofldiv2ALTV 47824 oddflALTV 47825 gcd2odd1 47830 oexpnegALTV 47839 oexpnegnz 47840 bits0oALTV 47843 opoeALTV 47845 opeoALTV 47846 omoeALTV 47847 omeoALTV 47848 epoo 47865 emoo 47866 stgoldbwt 47938 sbgoldbwt 47939 sbgoldbst 47940 sbgoldbm 47946 bgoldbtbndlem1 47967 bgoldbtbndlem2 47968 bgoldbtbndlem3 47969 bgoldbtbndlem4 47970 bgoldbtbnd 47971 tgoldbach 47979 |
| Copyright terms: Public domain | W3C validator |