| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddz | Structured version Visualization version GIF version | ||
| Description: An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddz | ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47630 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 / cdiv 11835 2c2 12241 ℤcz 12529 Odd codd 47626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-odd 47628 |
| This theorem is referenced by: oddm1div2z 47635 oddp1eveni 47642 oddm1eveni 47643 m1expoddALTV 47649 2dvdsoddp1 47657 2dvdsoddm1 47658 zofldiv2ALTV 47663 oddflALTV 47664 gcd2odd1 47669 oexpnegALTV 47678 oexpnegnz 47679 bits0oALTV 47682 opoeALTV 47684 opeoALTV 47685 omoeALTV 47686 omeoALTV 47687 epoo 47704 emoo 47705 stgoldbwt 47777 sbgoldbwt 47778 sbgoldbst 47779 sbgoldbm 47785 bgoldbtbndlem1 47806 bgoldbtbndlem2 47807 bgoldbtbndlem3 47808 bgoldbtbndlem4 47809 bgoldbtbnd 47810 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |