MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssr Structured version   Visualization version   GIF version

Theorem f1ssr 6823
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
f1ssr ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ssr
StepHypRef Expression
1 f1fn 6818 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21adantr 480 . . 3 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹 Fn 𝐴)
3 simpr 484 . . 3 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → ran 𝐹𝐶)
4 df-f 6577 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
52, 3, 4sylanbrc 582 . 2 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴𝐶)
6 df-f1 6578 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
76simprbi 496 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
87adantr 480 . 2 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → Fun 𝐹)
9 df-f1 6578 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
105, 8, 9sylanbrc 582 1 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3976  ccnv 5699  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-f 6577  df-f1 6578
This theorem is referenced by:  f1resf1  6825  domdifsn  9120  marypha1  9503  m2cpmf1  22770  ausgrusgri  29203  uspgrupgrushgr  29214  usgrumgruspgr  29217  usgruspgrb  29218  usgrres  29343  usgrres1  29350  lindflbs  33372  dimkerim  33640  cantnfub2  43284
  Copyright terms: Public domain W3C validator