MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssr Structured version   Visualization version   GIF version

Theorem f1ssr 6343
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
f1ssr ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ssr
StepHypRef Expression
1 f1fn 6338 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21adantr 474 . . 3 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹 Fn 𝐴)
3 simpr 479 . . 3 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → ran 𝐹𝐶)
4 df-f 6126 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
52, 3, 4sylanbrc 580 . 2 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴𝐶)
6 df-f1 6127 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
76simprbi 492 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
87adantr 474 . 2 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → Fun 𝐹)
9 df-f1 6127 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
105, 8, 9sylanbrc 580 1 ((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wss 3797  ccnv 5340  ran crn 5342  Fun wfun 6116   Fn wfn 6117  wf 6118  1-1wf1 6119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-f 6126  df-f1 6127
This theorem is referenced by:  f1resf1  6345  domdifsn  8311  marypha1  8608  m2cpmf1  20917  ausgrusgri  26466  uspgrupgrushgr  26475  usgrumgruspgr  26478  usgruspgrb  26479  usgrres  26604  usgrres1  26611
  Copyright terms: Public domain W3C validator