![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrupgrushgr | Structured version Visualization version GIF version |
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.) |
Ref | Expression |
---|---|
uspgrupgrushgr | ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr 28436 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
2 | uspgrushgr 28435 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
3 | 1, 2 | jca 513 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
4 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2733 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | 4, 5 | ushgrf 28323 | . . . 4 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | edgval 28309 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
8 | upgredgss 28392 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
9 | 7, 8 | eqsstrrid 4032 | . . . 4 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | f1ssr 6795 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
11 | 6, 9, 10 | syl2anr 598 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
12 | 4, 5 | isuspgr 28412 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
13 | 12 | adantr 482 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph) |
15 | 3, 14 | impbii 208 | 1 ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2107 {crab 3433 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 {csn 4629 class class class wbr 5149 dom cdm 5677 ran crn 5678 –1-1→wf1 6541 ‘cfv 6544 ≤ cle 11249 2c2 12267 ♯chash 14290 Vtxcvtx 28256 iEdgciedg 28257 Edgcedg 28307 USHGraphcushgr 28317 UPGraphcupgr 28340 USPGraphcuspgr 28408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fv 6552 df-edg 28308 df-ushgr 28319 df-upgr 28342 df-uspgr 28410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |