| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrupgrushgr | Structured version Visualization version GIF version | ||
| Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.) |
| Ref | Expression |
|---|---|
| uspgrupgrushgr | ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr 29141 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 2 | uspgrushgr 29140 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| 4 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | ushgrf 29026 | . . . 4 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 7 | edgval 29012 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 8 | upgredgss 29095 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 9 | 7, 8 | eqsstrrid 3977 | . . . 4 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 10 | f1ssr 6730 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 11 | 6, 9, 10 | syl2anr 597 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 12 | 4, 5 | isuspgr 29115 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph) |
| 15 | 3, 14 | impbii 209 | 1 ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 class class class wbr 5095 dom cdm 5623 ran crn 5624 –1-1→wf1 6483 ‘cfv 6486 ≤ cle 11169 2c2 12201 ♯chash 14255 Vtxcvtx 28959 iEdgciedg 28960 Edgcedg 29010 USHGraphcushgr 29020 UPGraphcupgr 29043 USPGraphcuspgr 29111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fv 6494 df-edg 29011 df-ushgr 29022 df-upgr 29045 df-uspgr 29113 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |