MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgrushgr Structured version   Visualization version   GIF version

Theorem uspgrupgrushgr 29113
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
uspgrupgrushgr (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))

Proof of Theorem uspgrupgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 29112 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 uspgrushgr 29111 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
31, 2jca 511 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
4 eqid 2730 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2730 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5ushgrf 28997 . . . 4 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
7 edgval 28983 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
8 upgredgss 29066 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
97, 8eqsstrrid 3989 . . . 4 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
10 f1ssr 6765 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
116, 9, 10syl2anr 597 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
124, 5isuspgr 29086 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1312adantr 480 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1411, 13mpbird 257 . 2 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph)
153, 14impbii 209 1 (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  {crab 3408  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  dom cdm 5641  ran crn 5642  1-1wf1 6511  cfv 6514  cle 11216  2c2 12248  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  USHGraphcushgr 28991  UPGraphcupgr 29014  USPGraphcuspgr 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522  df-edg 28982  df-ushgr 28993  df-upgr 29016  df-uspgr 29084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator