MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgrushgr Structured version   Visualization version   GIF version

Theorem uspgrupgrushgr 29152
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
uspgrupgrushgr (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))

Proof of Theorem uspgrupgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 29151 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 uspgrushgr 29150 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
31, 2jca 511 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
4 eqid 2731 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2731 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5ushgrf 29036 . . . 4 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
7 edgval 29022 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
8 upgredgss 29105 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
97, 8eqsstrrid 3969 . . . 4 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
10 f1ssr 6720 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
116, 9, 10syl2anr 597 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
124, 5isuspgr 29125 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1312adantr 480 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1411, 13mpbird 257 . 2 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph)
153, 14impbii 209 1 (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  {crab 3395  cdif 3894  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   class class class wbr 5086  dom cdm 5611  ran crn 5612  1-1wf1 6473  cfv 6476  cle 11142  2c2 12175  chash 14232  Vtxcvtx 28969  iEdgciedg 28970  Edgcedg 29020  USHGraphcushgr 29030  UPGraphcupgr 29053  USPGraphcuspgr 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fv 6484  df-edg 29021  df-ushgr 29032  df-upgr 29055  df-uspgr 29123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator