MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgrushgr Structured version   Visualization version   GIF version

Theorem uspgrupgrushgr 26961
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
uspgrupgrushgr (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))

Proof of Theorem uspgrupgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 26960 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 uspgrushgr 26959 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
31, 2jca 515 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
4 eqid 2824 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2824 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5ushgrf 26847 . . . 4 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
7 edgval 26833 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
8 upgredgss 26916 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
97, 8eqsstrrid 4000 . . . 4 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
10 f1ssr 6564 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
116, 9, 10syl2anr 599 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
124, 5isuspgr 26936 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1312adantr 484 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1411, 13mpbird 260 . 2 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph)
153, 14impbii 212 1 (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2115  {crab 3136  cdif 3915  wss 3918  c0 4274  𝒫 cpw 4520  {csn 4548   class class class wbr 5049  dom cdm 5538  ran crn 5539  1-1wf1 6335  cfv 6338  cle 10663  2c2 11680  chash 13686  Vtxcvtx 26780  iEdgciedg 26781  Edgcedg 26831  USHGraphcushgr 26841  UPGraphcupgr 26864  USPGraphcuspgr 26932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fv 6346  df-edg 26832  df-ushgr 26843  df-upgr 26866  df-uspgr 26934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator