MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgrushgr Structured version   Visualization version   GIF version

Theorem uspgrupgrushgr 29158
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
uspgrupgrushgr (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))

Proof of Theorem uspgrupgrushgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 29157 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
2 uspgrushgr 29156 . . 3 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
31, 2jca 511 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
4 eqid 2735 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2735 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5ushgrf 29042 . . . 4 (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}))
7 edgval 29028 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
8 upgredgss 29111 . . . . 5 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
97, 8eqsstrrid 3998 . . . 4 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
10 f1ssr 6780 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
116, 9, 10syl2anr 597 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
124, 5isuspgr 29131 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1312adantr 480 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1411, 13mpbird 257 . 2 ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph)
153, 14impbii 209 1 (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  dom cdm 5654  ran crn 5655  1-1wf1 6528  cfv 6531  cle 11270  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  USHGraphcushgr 29036  UPGraphcupgr 29059  USPGraphcuspgr 29127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fv 6539  df-edg 29027  df-ushgr 29038  df-upgr 29061  df-uspgr 29129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator