![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrupgrushgr | Structured version Visualization version GIF version |
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.) |
Ref | Expression |
---|---|
uspgrupgrushgr | ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr 26475 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
2 | uspgrushgr 26474 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
3 | 1, 2 | jca 509 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
4 | eqid 2825 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2825 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | 4, 5 | ushgrf 26361 | . . . 4 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | edgval 26347 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
8 | upgredgss 26430 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
9 | 7, 8 | syl5eqssr 3875 | . . . 4 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | f1ssr 6344 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
11 | 6, 9, 10 | syl2anr 592 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
12 | 4, 5 | isuspgr 26451 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
13 | 12 | adantr 474 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
14 | 11, 13 | mpbird 249 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph) |
15 | 3, 14 | impbii 201 | 1 ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∈ wcel 2166 {crab 3121 ∖ cdif 3795 ⊆ wss 3798 ∅c0 4144 𝒫 cpw 4378 {csn 4397 class class class wbr 4873 dom cdm 5342 ran crn 5343 –1-1→wf1 6120 ‘cfv 6123 ≤ cle 10392 2c2 11406 ♯chash 13410 Vtxcvtx 26294 iEdgciedg 26295 Edgcedg 26345 USHGraphcushgr 26355 UPGraphcupgr 26378 USPGraphcuspgr 26447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fv 6131 df-edg 26346 df-ushgr 26357 df-upgr 26380 df-uspgr 26449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |