| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrupgrushgr | Structured version Visualization version GIF version | ||
| Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.) |
| Ref | Expression |
|---|---|
| uspgrupgrushgr | ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr 29151 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
| 2 | uspgrushgr 29150 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| 4 | eqid 2731 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | ushgrf 29036 | . . . 4 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 7 | edgval 29022 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 8 | upgredgss 29105 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 9 | 7, 8 | eqsstrrid 3969 | . . . 4 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 10 | f1ssr 6720 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 11 | 6, 9, 10 | syl2anr 597 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 12 | 4, 5 | isuspgr 29125 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph) → 𝐺 ∈ USPGraph) |
| 15 | 3, 14 | impbii 209 | 1 ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4278 𝒫 cpw 4545 {csn 4571 class class class wbr 5086 dom cdm 5611 ran crn 5612 –1-1→wf1 6473 ‘cfv 6476 ≤ cle 11142 2c2 12175 ♯chash 14232 Vtxcvtx 28969 iEdgciedg 28970 Edgcedg 29020 USHGraphcushgr 29030 UPGraphcupgr 29053 USPGraphcuspgr 29121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fv 6484 df-edg 29021 df-ushgr 29032 df-upgr 29055 df-uspgr 29123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |