MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   GIF version

Theorem f1ssres 6747
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6739 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 6709 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 581 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 6502 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 funres11 6579 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
64, 5simplbiim 506 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
76adantr 482 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
8 df-f1 6502 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
93, 7, 8sylanbrc 584 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wss 3911  ccnv 5633  cres 5636  Fun wfun 6491  wf 6493  1-1wf1 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502
This theorem is referenced by:  f1resf1  6748  f1ores  6799  oacomf1olem  8512  domssl  8939  undom  9004  pwfseqlem5  10600  hashimarn  14341  hashf1lem2  14356  conjsubgen  19042  sylow1lem2  19382  sylow2blem1  19403  usgrres  28259
  Copyright terms: Public domain W3C validator