| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ssres | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| f1ssres | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6714 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssres 6684 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | df-f1 6481 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | funres11 6553 | . . . 4 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐶)) | |
| 6 | 4, 5 | simplbiim 504 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(𝐹 ↾ 𝐶)) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡(𝐹 ↾ 𝐶)) |
| 8 | df-f1 6481 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) | |
| 9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3897 ◡ccnv 5610 ↾ cres 5613 Fun wfun 6470 ⟶wf 6472 –1-1→wf1 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 |
| This theorem is referenced by: f1resf1 6722 f1ores 6772 oacomf1olem 8474 domssl 8915 undom 8973 pwfseqlem5 10549 hashimarn 14342 hashf1lem2 14358 conjsubgen 19158 sylow1lem2 19506 sylow2blem1 19527 usgrres 29281 lmimdim 33608 |
| Copyright terms: Public domain | W3C validator |