MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   GIF version

Theorem f1ssres 6727
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6720 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 6690 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 580 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 6487 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 funres11 6559 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
64, 5simplbiim 504 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
76adantr 480 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
8 df-f1 6487 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
93, 7, 8sylanbrc 583 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3903  ccnv 5618  cres 5621  Fun wfun 6476  wf 6478  1-1wf1 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487
This theorem is referenced by:  f1resf1  6728  f1ores  6778  oacomf1olem  8482  domssl  8923  undom  8982  pwfseqlem5  10557  hashimarn  14347  hashf1lem2  14363  conjsubgen  19130  sylow1lem2  19478  sylow2blem1  19499  usgrres  29253  lmimdim  33570
  Copyright terms: Public domain W3C validator