Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   GIF version

Theorem f1ssres 6577
 Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6570 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 6539 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 582 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 6355 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 funres11 6426 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
64, 5simplbiim 507 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
76adantr 483 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
8 df-f1 6355 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
93, 7, 8sylanbrc 585 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ⊆ wss 3936  ◡ccnv 5549   ↾ cres 5552  Fun wfun 6344  ⟶wf 6346  –1-1→wf1 6347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-br 5060  df-opab 5122  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355 This theorem is referenced by:  f1resf1  6578  f1ores  6624  oacomf1olem  8184  pwfseqlem5  10079  hashimarn  13795  hashf1lem2  13808  conjsubgen  18385  sylow1lem2  18718  sylow2blem1  18739  usgrres  27084
 Copyright terms: Public domain W3C validator