MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   GIF version

Theorem f1ssres 6796
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6788 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 6758 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 581 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 6549 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
5 funres11 6626 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
64, 5simplbiim 506 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
76adantr 482 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
8 df-f1 6549 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
93, 7, 8sylanbrc 584 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wss 3949  ccnv 5676  cres 5679  Fun wfun 6538  wf 6540  1-1wf1 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549
This theorem is referenced by:  f1resf1  6797  f1ores  6848  oacomf1olem  8564  domssl  8994  undom  9059  pwfseqlem5  10658  hashimarn  14400  hashf1lem2  14417  conjsubgen  19125  sylow1lem2  19467  sylow2blem1  19488  usgrres  28596  lmimdim  32720
  Copyright terms: Public domain W3C validator