| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ssres | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| f1ssres | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6727 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fssres 6697 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | df-f1 6494 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | funres11 6566 | . . . 4 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐶)) | |
| 6 | 4, 5 | simplbiim 504 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(𝐹 ↾ 𝐶)) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡(𝐹 ↾ 𝐶)) |
| 8 | df-f1 6494 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) | |
| 9 | 3, 7, 8 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 ◡ccnv 5620 ↾ cres 5623 Fun wfun 6483 ⟶wf 6485 –1-1→wf1 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 |
| This theorem is referenced by: f1resf1 6735 f1ores 6785 oacomf1olem 8488 domssl 8931 undom 8989 pwfseqlem5 10565 hashimarn 14354 hashf1lem2 14370 conjsubgen 19171 sylow1lem2 19519 sylow2blem1 19540 usgrres 29307 lmimdim 33688 |
| Copyright terms: Public domain | W3C validator |