MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres1 Structured version   Visualization version   GIF version

Theorem usgrres1 29332
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 29285 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
usgrres1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem usgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6886 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of1 6847 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹1-1𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹1-1𝐹)
4 eqidd 2738 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹))
5 dmresi 6070 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → dom ( I ↾ 𝐹) = 𝐹)
7 eqidd 2738 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 = 𝐹)
84, 6, 7f1eq123d 6840 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ↔ ( I ↾ 𝐹):𝐹1-1𝐹))
93, 8mpbird 257 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹)
10 usgrumgr 29198 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
11 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
13 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
1411, 12, 13umgrres1lem 29327 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
1510, 14sylan 580 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
16 f1ssr 6810 . . 3 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
179, 15, 16syl2anc 584 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
18 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
19 opex 5469 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
2018, 19eqeltri 2837 . . 3 𝑆 ∈ V
2111, 12, 13, 18upgrres1lem2 29328 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2221eqcomi 2746 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
2311, 12, 13, 18upgrres1lem3 29329 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
2423eqcomi 2746 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
2522, 24isusgrs 29173 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2620, 25mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2717, 26mpbird 257 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wnel 3046  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  𝒫 cpw 4600  {csn 4626  cop 4632   I cid 5577  dom cdm 5685  ran crn 5686  cres 5687  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  2c2 12321  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064  UMGraphcumgr 29098  USGraphcusgr 29166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-vtx 29015  df-iedg 29016  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-umgr 29100  df-usgr 29168
This theorem is referenced by:  fusgrfis  29347  cusgrres  29466
  Copyright terms: Public domain W3C validator