MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres1 Structured version   Visualization version   GIF version

Theorem usgrres1 29251
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 29204 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
usgrres1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem usgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6881 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of1 6842 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹1-1𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹1-1𝐹)
4 eqidd 2727 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹))
5 dmresi 6061 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → dom ( I ↾ 𝐹) = 𝐹)
7 eqidd 2727 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 = 𝐹)
84, 6, 7f1eq123d 6835 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ↔ ( I ↾ 𝐹):𝐹1-1𝐹))
93, 8mpbird 256 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹)
10 usgrumgr 29117 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
11 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
13 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
1411, 12, 13umgrres1lem 29246 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
1510, 14sylan 578 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
16 f1ssr 6804 . . 3 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
179, 15, 16syl2anc 582 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
18 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
19 opex 5470 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
2018, 19eqeltri 2822 . . 3 𝑆 ∈ V
2111, 12, 13, 18upgrres1lem2 29247 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2221eqcomi 2735 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
2311, 12, 13, 18upgrres1lem3 29248 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
2423eqcomi 2735 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
2522, 24isusgrs 29092 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2620, 25mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2717, 26mpbird 256 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wnel 3036  {crab 3419  Vcvv 3462  cdif 3944  wss 3947  𝒫 cpw 4607  {csn 4633  cop 4639   I cid 5579  dom cdm 5682  ran crn 5683  cres 5684  1-1wf1 6551  1-1-ontowf1o 6553  cfv 6554  2c2 12319  chash 14347  Vtxcvtx 28932  iEdgciedg 28933  Edgcedg 28983  UMGraphcumgr 29017  USGraphcusgr 29085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-hash 14348  df-vtx 28934  df-iedg 28935  df-edg 28984  df-uhgr 28994  df-upgr 29018  df-umgr 29019  df-usgr 29087
This theorem is referenced by:  fusgrfis  29266  cusgrres  29385
  Copyright terms: Public domain W3C validator