MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres1 Structured version   Visualization version   GIF version

Theorem usgrres1 26784
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 26737 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
usgrres1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem usgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6527 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of1 6489 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹1-1𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹1-1𝐹)
4 eqidd 2798 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹))
5 dmresi 5806 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → dom ( I ↾ 𝐹) = 𝐹)
7 eqidd 2798 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 = 𝐹)
84, 6, 7f1eq123d 6483 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ↔ ( I ↾ 𝐹):𝐹1-1𝐹))
93, 8mpbird 258 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹)
10 usgrumgr 26651 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
11 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
13 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
1411, 12, 13umgrres1lem 26779 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
1510, 14sylan 580 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
16 f1ssr 6456 . . 3 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
179, 15, 16syl2anc 584 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
18 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
19 opex 5255 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
2018, 19eqeltri 2881 . . 3 𝑆 ∈ V
2111, 12, 13, 18upgrres1lem2 26780 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2221eqcomi 2806 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
2311, 12, 13, 18upgrres1lem3 26781 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
2423eqcomi 2806 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
2522, 24isusgrs 26628 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2620, 25mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2717, 26mpbird 258 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wnel 3092  {crab 3111  Vcvv 3440  cdif 3862  wss 3865  𝒫 cpw 4459  {csn 4478  cop 4484   I cid 5354  dom cdm 5450  ran crn 5451  cres 5452  1-1wf1 6229  1-1-ontowf1o 6231  cfv 6232  2c2 11546  chash 13544  Vtxcvtx 26468  iEdgciedg 26469  Edgcedg 26519  UMGraphcumgr 26553  USGraphcusgr 26621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-hash 13545  df-vtx 26470  df-iedg 26471  df-edg 26520  df-uhgr 26530  df-upgr 26554  df-umgr 26555  df-usgr 26623
This theorem is referenced by:  fusgrfis  26799  cusgrres  26917
  Copyright terms: Public domain W3C validator