![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrres1 | Structured version Visualization version GIF version |
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 28522 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ |
Ref | Expression |
---|---|
usgrres1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6871 | . . . . 5 ⊢ ( I ↾ 𝐹):𝐹–1-1-onto→𝐹 | |
2 | f1of1 6832 | . . . . 5 ⊢ (( I ↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹–1-1→𝐹) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹–1-1→𝐹) |
4 | eqidd 2733 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹)) | |
5 | dmresi 6051 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → dom ( I ↾ 𝐹) = 𝐹) |
7 | eqidd 2733 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = 𝐹) | |
8 | 4, 6, 7 | f1eq123d 6825 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ↔ ( I ↾ 𝐹):𝐹–1-1→𝐹)) |
9 | 3, 8 | mpbird 256 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹) |
10 | usgrumgr 28436 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
11 | upgrres1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | upgrres1.f | . . . . 5 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
14 | 11, 12, 13 | umgrres1lem 28564 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
15 | 10, 14 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
16 | f1ssr 6794 | . . 3 ⊢ ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | |
17 | 9, 15, 16 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
18 | upgrres1.s | . . . 4 ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ | |
19 | opex 5464 | . . . 4 ⊢ ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V | |
20 | 18, 19 | eqeltri 2829 | . . 3 ⊢ 𝑆 ∈ V |
21 | 11, 12, 13, 18 | upgrres1lem2 28565 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
22 | 21 | eqcomi 2741 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 11, 12, 13, 18 | upgrres1lem3 28566 | . . . . 5 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
24 | 23 | eqcomi 2741 | . . . 4 ⊢ ( I ↾ 𝐹) = (iEdg‘𝑆) |
25 | 22, 24 | isusgrs 28413 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
26 | 20, 25 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
27 | 17, 26 | mpbird 256 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 {crab 3432 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 {csn 4628 ⟨cop 4634 I cid 5573 dom cdm 5676 ran crn 5677 ↾ cres 5678 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ‘cfv 6543 2c2 12266 ♯chash 14289 Vtxcvtx 28253 iEdgciedg 28254 Edgcedg 28304 UMGraphcumgr 28338 USGraphcusgr 28406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-hash 14290 df-vtx 28255 df-iedg 28256 df-edg 28305 df-uhgr 28315 df-upgr 28339 df-umgr 28340 df-usgr 28408 |
This theorem is referenced by: fusgrfis 28584 cusgrres 28702 |
Copyright terms: Public domain | W3C validator |