![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cantnfub2 | Structured version Visualization version GIF version |
Description: Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
Ref | Expression |
---|---|
cantnfub2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
cantnfub2.a | ⊢ (𝜑 → 𝐴:𝑁–1-1→On) |
cantnfub2.m | ⊢ (𝜑 → 𝑀:𝑁⟶ω) |
cantnfub2.f | ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) |
Ref | Expression |
---|---|
cantnfub2 | ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfub2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴:𝑁–1-1→On) | |
2 | f1fn 6788 | . . . . . . 7 ⊢ (𝐴:𝑁–1-1→On → 𝐴 Fn 𝑁) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 Fn 𝑁) |
4 | cantnfub2.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ω) | |
5 | nnfi 9173 | . . . . . . 7 ⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | fnfi 9187 | . . . . . 6 ⊢ ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Fin) | |
8 | 3, 6, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | rnfi 9341 | . . . . 5 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ Fin) |
11 | f1f 6787 | . . . . . 6 ⊢ (𝐴:𝑁–1-1→On → 𝐴:𝑁⟶On) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴:𝑁⟶On) |
13 | 12 | frnd 6725 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ On) |
14 | ssonuni 7771 | . . . 4 ⊢ (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ∪ ran 𝐴 ∈ On)) | |
15 | 10, 13, 14 | sylc 65 | . . 3 ⊢ (𝜑 → ∪ ran 𝐴 ∈ On) |
16 | onsuc 7803 | . . 3 ⊢ (∪ ran 𝐴 ∈ On → suc ∪ ran 𝐴 ∈ On) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → suc ∪ ran 𝐴 ∈ On) |
18 | onsucuni 7820 | . . . . 5 ⊢ (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ∪ ran 𝐴) | |
19 | 13, 18 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ suc ∪ ran 𝐴) |
20 | f1ssr 6794 | . . . 4 ⊢ ((𝐴:𝑁–1-1→On ∧ ran 𝐴 ⊆ suc ∪ ran 𝐴) → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) | |
21 | 1, 19, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) |
22 | cantnfub2.m | . . 3 ⊢ (𝜑 → 𝑀:𝑁⟶ω) | |
23 | cantnfub2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) | |
24 | 17, 4, 21, 22, 23 | cantnfub 42536 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
25 | 3anass 1094 | . 2 ⊢ ((suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)) ↔ (suc ∪ ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)))) | |
26 | 17, 24, 25 | sylanbrc 582 | 1 ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ∅c0 4322 ifcif 4528 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 dom cdm 5676 ran crn 5677 Oncon0 6364 suc csuc 6366 Fn wfn 6538 ⟶wf 6539 –1-1→wf1 6540 ‘cfv 6543 (class class class)co 7412 ωcom 7859 ↑o coe 8471 Fincfn 8945 CNF ccnf 9662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-seqom 8454 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-oexp 8478 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-cnf 9663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |