![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cantnfub2 | Structured version Visualization version GIF version |
Description: Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
Ref | Expression |
---|---|
cantnfub2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
cantnfub2.a | ⊢ (𝜑 → 𝐴:𝑁–1-1→On) |
cantnfub2.m | ⊢ (𝜑 → 𝑀:𝑁⟶ω) |
cantnfub2.f | ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) |
Ref | Expression |
---|---|
cantnfub2 | ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfub2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴:𝑁–1-1→On) | |
2 | f1fn 6806 | . . . . . . 7 ⊢ (𝐴:𝑁–1-1→On → 𝐴 Fn 𝑁) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 Fn 𝑁) |
4 | cantnfub2.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ω) | |
5 | nnfi 9206 | . . . . . . 7 ⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | fnfi 9216 | . . . . . 6 ⊢ ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Fin) | |
8 | 3, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | rnfi 9378 | . . . . 5 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ Fin) |
11 | f1f 6805 | . . . . . 6 ⊢ (𝐴:𝑁–1-1→On → 𝐴:𝑁⟶On) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴:𝑁⟶On) |
13 | 12 | frnd 6745 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ On) |
14 | ssonuni 7799 | . . . 4 ⊢ (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ∪ ran 𝐴 ∈ On)) | |
15 | 10, 13, 14 | sylc 65 | . . 3 ⊢ (𝜑 → ∪ ran 𝐴 ∈ On) |
16 | onsuc 7831 | . . 3 ⊢ (∪ ran 𝐴 ∈ On → suc ∪ ran 𝐴 ∈ On) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → suc ∪ ran 𝐴 ∈ On) |
18 | onsucuni 7848 | . . . . 5 ⊢ (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ∪ ran 𝐴) | |
19 | 13, 18 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ suc ∪ ran 𝐴) |
20 | f1ssr 6811 | . . . 4 ⊢ ((𝐴:𝑁–1-1→On ∧ ran 𝐴 ⊆ suc ∪ ran 𝐴) → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) | |
21 | 1, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) |
22 | cantnfub2.m | . . 3 ⊢ (𝜑 → 𝑀:𝑁⟶ω) | |
23 | cantnfub2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) | |
24 | 17, 4, 21, 22, 23 | cantnfub 43311 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
25 | 3anass 1094 | . 2 ⊢ ((suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)) ↔ (suc ∪ ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)))) | |
26 | 17, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ∅c0 4339 ifcif 4531 ∪ cuni 4912 ↦ cmpt 5231 ◡ccnv 5688 dom cdm 5689 ran crn 5690 Oncon0 6386 suc csuc 6388 Fn wfn 6558 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 (class class class)co 7431 ωcom 7887 ↑o coe 8504 Fincfn 8984 CNF ccnf 9699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seqom 8487 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-oexp 8511 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-oi 9548 df-cnf 9700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |