Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 43312
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ran 𝐴) when (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (𝜑𝑁 ∈ ω)
cantnfub2.a (𝜑𝐴:𝑁1-1→On)
cantnfub2.m (𝜑𝑀:𝑁⟶ω)
cantnfub2.f 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub2 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (𝜑𝐴:𝑁1-1→On)
2 f1fn 6806 . . . . . . 7 (𝐴:𝑁1-1→On → 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (𝜑𝑁 ∈ ω)
5 nnfi 9206 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (𝜑𝑁 ∈ Fin)
7 fnfi 9216 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
83, 6, 7syl2anc 584 . . . . 5 (𝜑𝐴 ∈ Fin)
9 rnfi 9378 . . . . 5 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (𝜑 → ran 𝐴 ∈ Fin)
11 f1f 6805 . . . . . 6 (𝐴:𝑁1-1→On → 𝐴:𝑁⟶On)
121, 11syl 17 . . . . 5 (𝜑𝐴:𝑁⟶On)
1312frnd 6745 . . . 4 (𝜑 → ran 𝐴 ⊆ On)
14 ssonuni 7799 . . . 4 (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (𝜑 ran 𝐴 ∈ On)
16 onsuc 7831 . . 3 ( ran 𝐴 ∈ On → suc ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (𝜑 → suc ran 𝐴 ∈ On)
18 onsucuni 7848 . . . . 5 (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ran 𝐴)
1913, 18syl 17 . . . 4 (𝜑 → ran 𝐴 ⊆ suc ran 𝐴)
20 f1ssr 6811 . . . 4 ((𝐴:𝑁1-1→On ∧ ran 𝐴 ⊆ suc ran 𝐴) → 𝐴:𝑁1-1→suc ran 𝐴)
211, 19, 20syl2anc 584 . . 3 (𝜑𝐴:𝑁1-1→suc ran 𝐴)
22 cantnfub2.m . . 3 (𝜑𝑀:𝑁⟶ω)
23 cantnfub2.f . . 3 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
2417, 4, 21, 22, 23cantnfub 43311 . 2 (𝜑 → (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
25 3anass 1094 . 2 ((suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)) ↔ (suc ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴))))
2617, 24, 25sylanbrc 583 1 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  c0 4339  ifcif 4531   cuni 4912  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  Oncon0 6386  suc csuc 6388   Fn wfn 6558  wf 6559  1-1wf1 6560  cfv 6563  (class class class)co 7431  ωcom 7887  o coe 8504  Fincfn 8984   CNF ccnf 9699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqom 8487  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-oexp 8511  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-cnf 9700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator