![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cantnfub2 | Structured version Visualization version GIF version |
Description: Given a finite number of terms of the form ((Ο βo (π΄βπ)) Β·o (πβπ)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (Ο βo suc βͺ ran π΄) when (πβπ) is less than Ο. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
Ref | Expression |
---|---|
cantnfub2.n | β’ (π β π β Ο) |
cantnfub2.a | β’ (π β π΄:πβ1-1βOn) |
cantnfub2.m | β’ (π β π:πβΆΟ) |
cantnfub2.f | β’ πΉ = (π₯ β suc βͺ ran π΄ β¦ if(π₯ β ran π΄, (πβ(β‘π΄βπ₯)), β )) |
Ref | Expression |
---|---|
cantnfub2 | β’ (π β (suc βͺ ran π΄ β On β§ πΉ β dom (Ο CNF suc βͺ ran π΄) β§ ((Ο CNF suc βͺ ran π΄)βπΉ) β (Ο βo suc βͺ ran π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfub2.a | . . . . . . 7 β’ (π β π΄:πβ1-1βOn) | |
2 | f1fn 6778 | . . . . . . 7 β’ (π΄:πβ1-1βOn β π΄ Fn π) | |
3 | 1, 2 | syl 17 | . . . . . 6 β’ (π β π΄ Fn π) |
4 | cantnfub2.n | . . . . . . 7 β’ (π β π β Ο) | |
5 | nnfi 9162 | . . . . . . 7 β’ (π β Ο β π β Fin) | |
6 | 4, 5 | syl 17 | . . . . . 6 β’ (π β π β Fin) |
7 | fnfi 9176 | . . . . . 6 β’ ((π΄ Fn π β§ π β Fin) β π΄ β Fin) | |
8 | 3, 6, 7 | syl2anc 583 | . . . . 5 β’ (π β π΄ β Fin) |
9 | rnfi 9330 | . . . . 5 β’ (π΄ β Fin β ran π΄ β Fin) | |
10 | 8, 9 | syl 17 | . . . 4 β’ (π β ran π΄ β Fin) |
11 | f1f 6777 | . . . . . 6 β’ (π΄:πβ1-1βOn β π΄:πβΆOn) | |
12 | 1, 11 | syl 17 | . . . . 5 β’ (π β π΄:πβΆOn) |
13 | 12 | frnd 6715 | . . . 4 β’ (π β ran π΄ β On) |
14 | ssonuni 7760 | . . . 4 β’ (ran π΄ β Fin β (ran π΄ β On β βͺ ran π΄ β On)) | |
15 | 10, 13, 14 | sylc 65 | . . 3 β’ (π β βͺ ran π΄ β On) |
16 | onsuc 7792 | . . 3 β’ (βͺ ran π΄ β On β suc βͺ ran π΄ β On) | |
17 | 15, 16 | syl 17 | . 2 β’ (π β suc βͺ ran π΄ β On) |
18 | onsucuni 7809 | . . . . 5 β’ (ran π΄ β On β ran π΄ β suc βͺ ran π΄) | |
19 | 13, 18 | syl 17 | . . . 4 β’ (π β ran π΄ β suc βͺ ran π΄) |
20 | f1ssr 6784 | . . . 4 β’ ((π΄:πβ1-1βOn β§ ran π΄ β suc βͺ ran π΄) β π΄:πβ1-1βsuc βͺ ran π΄) | |
21 | 1, 19, 20 | syl2anc 583 | . . 3 β’ (π β π΄:πβ1-1βsuc βͺ ran π΄) |
22 | cantnfub2.m | . . 3 β’ (π β π:πβΆΟ) | |
23 | cantnfub2.f | . . 3 β’ πΉ = (π₯ β suc βͺ ran π΄ β¦ if(π₯ β ran π΄, (πβ(β‘π΄βπ₯)), β )) | |
24 | 17, 4, 21, 22, 23 | cantnfub 42526 | . 2 β’ (π β (πΉ β dom (Ο CNF suc βͺ ran π΄) β§ ((Ο CNF suc βͺ ran π΄)βπΉ) β (Ο βo suc βͺ ran π΄))) |
25 | 3anass 1092 | . 2 β’ ((suc βͺ ran π΄ β On β§ πΉ β dom (Ο CNF suc βͺ ran π΄) β§ ((Ο CNF suc βͺ ran π΄)βπΉ) β (Ο βo suc βͺ ran π΄)) β (suc βͺ ran π΄ β On β§ (πΉ β dom (Ο CNF suc βͺ ran π΄) β§ ((Ο CNF suc βͺ ran π΄)βπΉ) β (Ο βo suc βͺ ran π΄)))) | |
26 | 17, 24, 25 | sylanbrc 582 | 1 β’ (π β (suc βͺ ran π΄ β On β§ πΉ β dom (Ο CNF suc βͺ ran π΄) β§ ((Ο CNF suc βͺ ran π΄)βπΉ) β (Ο βo suc βͺ ran π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3940 β c0 4314 ifcif 4520 βͺ cuni 4899 β¦ cmpt 5221 β‘ccnv 5665 dom cdm 5666 ran crn 5667 Oncon0 6354 suc csuc 6356 Fn wfn 6528 βΆwf 6529 β1-1βwf1 6530 βcfv 6533 (class class class)co 7401 Οcom 7848 βo coe 8460 Fincfn 8934 CNF ccnf 9651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-seqom 8443 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-oexp 8467 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-oi 9500 df-cnf 9652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |