| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cantnfub2 | Structured version Visualization version GIF version | ||
| Description: Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| cantnfub2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| cantnfub2.a | ⊢ (𝜑 → 𝐴:𝑁–1-1→On) |
| cantnfub2.m | ⊢ (𝜑 → 𝑀:𝑁⟶ω) |
| cantnfub2.f | ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) |
| Ref | Expression |
|---|---|
| cantnfub2 | ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfub2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴:𝑁–1-1→On) | |
| 2 | f1fn 6760 | . . . . . . 7 ⊢ (𝐴:𝑁–1-1→On → 𝐴 Fn 𝑁) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 Fn 𝑁) |
| 4 | cantnfub2.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 5 | nnfi 9137 | . . . . . . 7 ⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | fnfi 9148 | . . . . . 6 ⊢ ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Fin) | |
| 8 | 3, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) |
| 9 | rnfi 9298 | . . . . 5 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ Fin) |
| 11 | f1f 6759 | . . . . . 6 ⊢ (𝐴:𝑁–1-1→On → 𝐴:𝑁⟶On) | |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴:𝑁⟶On) |
| 13 | 12 | frnd 6699 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ On) |
| 14 | ssonuni 7759 | . . . 4 ⊢ (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ∪ ran 𝐴 ∈ On)) | |
| 15 | 10, 13, 14 | sylc 65 | . . 3 ⊢ (𝜑 → ∪ ran 𝐴 ∈ On) |
| 16 | onsuc 7790 | . . 3 ⊢ (∪ ran 𝐴 ∈ On → suc ∪ ran 𝐴 ∈ On) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → suc ∪ ran 𝐴 ∈ On) |
| 18 | onsucuni 7806 | . . . . 5 ⊢ (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ∪ ran 𝐴) | |
| 19 | 13, 18 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ suc ∪ ran 𝐴) |
| 20 | f1ssr 6765 | . . . 4 ⊢ ((𝐴:𝑁–1-1→On ∧ ran 𝐴 ⊆ suc ∪ ran 𝐴) → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) | |
| 21 | 1, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) |
| 22 | cantnfub2.m | . . 3 ⊢ (𝜑 → 𝑀:𝑁⟶ω) | |
| 23 | cantnfub2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) | |
| 24 | 17, 4, 21, 22, 23 | cantnfub 43317 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
| 25 | 3anass 1094 | . 2 ⊢ ((suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)) ↔ (suc ∪ ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)))) | |
| 26 | 17, 24, 25 | sylanbrc 583 | 1 ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∅c0 4299 ifcif 4491 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 ran crn 5642 Oncon0 6335 suc csuc 6337 Fn wfn 6509 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ↑o coe 8436 Fincfn 8921 CNF ccnf 9621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqom 8419 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-oexp 8443 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-cnf 9622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |