Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 43313
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ran 𝐴) when (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (𝜑𝑁 ∈ ω)
cantnfub2.a (𝜑𝐴:𝑁1-1→On)
cantnfub2.m (𝜑𝑀:𝑁⟶ω)
cantnfub2.f 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub2 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (𝜑𝐴:𝑁1-1→On)
2 f1fn 6780 . . . . . . 7 (𝐴:𝑁1-1→On → 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (𝜑𝑁 ∈ ω)
5 nnfi 9186 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (𝜑𝑁 ∈ Fin)
7 fnfi 9197 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
83, 6, 7syl2anc 584 . . . . 5 (𝜑𝐴 ∈ Fin)
9 rnfi 9357 . . . . 5 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (𝜑 → ran 𝐴 ∈ Fin)
11 f1f 6779 . . . . . 6 (𝐴:𝑁1-1→On → 𝐴:𝑁⟶On)
121, 11syl 17 . . . . 5 (𝜑𝐴:𝑁⟶On)
1312frnd 6719 . . . 4 (𝜑 → ran 𝐴 ⊆ On)
14 ssonuni 7779 . . . 4 (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (𝜑 ran 𝐴 ∈ On)
16 onsuc 7810 . . 3 ( ran 𝐴 ∈ On → suc ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (𝜑 → suc ran 𝐴 ∈ On)
18 onsucuni 7827 . . . . 5 (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ran 𝐴)
1913, 18syl 17 . . . 4 (𝜑 → ran 𝐴 ⊆ suc ran 𝐴)
20 f1ssr 6785 . . . 4 ((𝐴:𝑁1-1→On ∧ ran 𝐴 ⊆ suc ran 𝐴) → 𝐴:𝑁1-1→suc ran 𝐴)
211, 19, 20syl2anc 584 . . 3 (𝜑𝐴:𝑁1-1→suc ran 𝐴)
22 cantnfub2.m . . 3 (𝜑𝑀:𝑁⟶ω)
23 cantnfub2.f . . 3 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
2417, 4, 21, 22, 23cantnfub 43312 . 2 (𝜑 → (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
25 3anass 1094 . 2 ((suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)) ↔ (suc ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴))))
2617, 24, 25sylanbrc 583 1 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  c0 4313  ifcif 4505   cuni 4888  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  Oncon0 6357  suc csuc 6359   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  ωcom 7866  o coe 8484  Fincfn 8964   CNF ccnf 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seqom 8467  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-oexp 8491  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-cnf 9681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator