Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 42527
Description: Given a finite number of terms of the form ((Ο‰ ↑o (π΄β€˜π‘›)) Β·o (π‘€β€˜π‘›)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (Ο‰ ↑o suc βˆͺ ran 𝐴) when (π‘€β€˜π‘›) is less than Ο‰. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (πœ‘ β†’ 𝑁 ∈ Ο‰)
cantnfub2.a (πœ‘ β†’ 𝐴:𝑁–1-1β†’On)
cantnfub2.m (πœ‘ β†’ 𝑀:π‘βŸΆΟ‰)
cantnfub2.f 𝐹 = (π‘₯ ∈ suc βˆͺ ran 𝐴 ↦ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…))
Assertion
Ref Expression
cantnfub2 (πœ‘ β†’ (suc βˆͺ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (Ο‰ CNF suc βˆͺ ran 𝐴) ∧ ((Ο‰ CNF suc βˆͺ ran 𝐴)β€˜πΉ) ∈ (Ο‰ ↑o suc βˆͺ ran 𝐴)))
Distinct variable groups:   πœ‘,π‘₯   π‘₯,𝐴   π‘₯,𝑀
Allowed substitution hints:   𝐹(π‘₯)   𝑁(π‘₯)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (πœ‘ β†’ 𝐴:𝑁–1-1β†’On)
2 f1fn 6778 . . . . . . 7 (𝐴:𝑁–1-1β†’On β†’ 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (πœ‘ β†’ 𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ Ο‰)
5 nnfi 9162 . . . . . . 7 (𝑁 ∈ Ο‰ β†’ 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ Fin)
7 fnfi 9176 . . . . . 6 ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) β†’ 𝐴 ∈ Fin)
83, 6, 7syl2anc 583 . . . . 5 (πœ‘ β†’ 𝐴 ∈ Fin)
9 rnfi 9330 . . . . 5 (𝐴 ∈ Fin β†’ ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (πœ‘ β†’ ran 𝐴 ∈ Fin)
11 f1f 6777 . . . . . 6 (𝐴:𝑁–1-1β†’On β†’ 𝐴:π‘βŸΆOn)
121, 11syl 17 . . . . 5 (πœ‘ β†’ 𝐴:π‘βŸΆOn)
1312frnd 6715 . . . 4 (πœ‘ β†’ ran 𝐴 βŠ† On)
14 ssonuni 7760 . . . 4 (ran 𝐴 ∈ Fin β†’ (ran 𝐴 βŠ† On β†’ βˆͺ ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (πœ‘ β†’ βˆͺ ran 𝐴 ∈ On)
16 onsuc 7792 . . 3 (βˆͺ ran 𝐴 ∈ On β†’ suc βˆͺ ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (πœ‘ β†’ suc βˆͺ ran 𝐴 ∈ On)
18 onsucuni 7809 . . . . 5 (ran 𝐴 βŠ† On β†’ ran 𝐴 βŠ† suc βˆͺ ran 𝐴)
1913, 18syl 17 . . . 4 (πœ‘ β†’ ran 𝐴 βŠ† suc βˆͺ ran 𝐴)
20 f1ssr 6784 . . . 4 ((𝐴:𝑁–1-1β†’On ∧ ran 𝐴 βŠ† suc βˆͺ ran 𝐴) β†’ 𝐴:𝑁–1-1β†’suc βˆͺ ran 𝐴)
211, 19, 20syl2anc 583 . . 3 (πœ‘ β†’ 𝐴:𝑁–1-1β†’suc βˆͺ ran 𝐴)
22 cantnfub2.m . . 3 (πœ‘ β†’ 𝑀:π‘βŸΆΟ‰)
23 cantnfub2.f . . 3 𝐹 = (π‘₯ ∈ suc βˆͺ ran 𝐴 ↦ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…))
2417, 4, 21, 22, 23cantnfub 42526 . 2 (πœ‘ β†’ (𝐹 ∈ dom (Ο‰ CNF suc βˆͺ ran 𝐴) ∧ ((Ο‰ CNF suc βˆͺ ran 𝐴)β€˜πΉ) ∈ (Ο‰ ↑o suc βˆͺ ran 𝐴)))
25 3anass 1092 . 2 ((suc βˆͺ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (Ο‰ CNF suc βˆͺ ran 𝐴) ∧ ((Ο‰ CNF suc βˆͺ ran 𝐴)β€˜πΉ) ∈ (Ο‰ ↑o suc βˆͺ ran 𝐴)) ↔ (suc βˆͺ ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (Ο‰ CNF suc βˆͺ ran 𝐴) ∧ ((Ο‰ CNF suc βˆͺ ran 𝐴)β€˜πΉ) ∈ (Ο‰ ↑o suc βˆͺ ran 𝐴))))
2617, 24, 25sylanbrc 582 1 (πœ‘ β†’ (suc βˆͺ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (Ο‰ CNF suc βˆͺ ran 𝐴) ∧ ((Ο‰ CNF suc βˆͺ ran 𝐴)β€˜πΉ) ∈ (Ο‰ ↑o suc βˆͺ ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3940  βˆ…c0 4314  ifcif 4520  βˆͺ cuni 4899   ↦ cmpt 5221  β—‘ccnv 5665  dom cdm 5666  ran crn 5667  Oncon0 6354  suc csuc 6356   Fn wfn 6528  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€˜cfv 6533  (class class class)co 7401  Ο‰com 7848   ↑o coe 8460  Fincfn 8934   CNF ccnf 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-seqom 8443  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-oexp 8467  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-oi 9500  df-cnf 9652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator