Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 42537
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ran 𝐴) when (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (𝜑𝑁 ∈ ω)
cantnfub2.a (𝜑𝐴:𝑁1-1→On)
cantnfub2.m (𝜑𝑀:𝑁⟶ω)
cantnfub2.f 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub2 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (𝜑𝐴:𝑁1-1→On)
2 f1fn 6788 . . . . . . 7 (𝐴:𝑁1-1→On → 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (𝜑𝑁 ∈ ω)
5 nnfi 9173 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (𝜑𝑁 ∈ Fin)
7 fnfi 9187 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
83, 6, 7syl2anc 583 . . . . 5 (𝜑𝐴 ∈ Fin)
9 rnfi 9341 . . . . 5 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (𝜑 → ran 𝐴 ∈ Fin)
11 f1f 6787 . . . . . 6 (𝐴:𝑁1-1→On → 𝐴:𝑁⟶On)
121, 11syl 17 . . . . 5 (𝜑𝐴:𝑁⟶On)
1312frnd 6725 . . . 4 (𝜑 → ran 𝐴 ⊆ On)
14 ssonuni 7771 . . . 4 (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (𝜑 ran 𝐴 ∈ On)
16 onsuc 7803 . . 3 ( ran 𝐴 ∈ On → suc ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (𝜑 → suc ran 𝐴 ∈ On)
18 onsucuni 7820 . . . . 5 (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ran 𝐴)
1913, 18syl 17 . . . 4 (𝜑 → ran 𝐴 ⊆ suc ran 𝐴)
20 f1ssr 6794 . . . 4 ((𝐴:𝑁1-1→On ∧ ran 𝐴 ⊆ suc ran 𝐴) → 𝐴:𝑁1-1→suc ran 𝐴)
211, 19, 20syl2anc 583 . . 3 (𝜑𝐴:𝑁1-1→suc ran 𝐴)
22 cantnfub2.m . . 3 (𝜑𝑀:𝑁⟶ω)
23 cantnfub2.f . . 3 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
2417, 4, 21, 22, 23cantnfub 42536 . 2 (𝜑 → (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
25 3anass 1094 . 2 ((suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)) ↔ (suc ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴))))
2617, 24, 25sylanbrc 582 1 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wss 3948  c0 4322  ifcif 4528   cuni 4908  cmpt 5231  ccnv 5675  dom cdm 5676  ran crn 5677  Oncon0 6364  suc csuc 6366   Fn wfn 6538  wf 6539  1-1wf1 6540  cfv 6543  (class class class)co 7412  ωcom 7859  o coe 8471  Fincfn 8945   CNF ccnf 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-seqom 8454  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-oexp 8478  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-oi 9511  df-cnf 9663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator