Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 43284
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ran 𝐴) when (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (𝜑𝑁 ∈ ω)
cantnfub2.a (𝜑𝐴:𝑁1-1→On)
cantnfub2.m (𝜑𝑀:𝑁⟶ω)
cantnfub2.f 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub2 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (𝜑𝐴:𝑁1-1→On)
2 f1fn 6818 . . . . . . 7 (𝐴:𝑁1-1→On → 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (𝜑𝑁 ∈ ω)
5 nnfi 9233 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (𝜑𝑁 ∈ Fin)
7 fnfi 9244 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
83, 6, 7syl2anc 583 . . . . 5 (𝜑𝐴 ∈ Fin)
9 rnfi 9408 . . . . 5 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (𝜑 → ran 𝐴 ∈ Fin)
11 f1f 6817 . . . . . 6 (𝐴:𝑁1-1→On → 𝐴:𝑁⟶On)
121, 11syl 17 . . . . 5 (𝜑𝐴:𝑁⟶On)
1312frnd 6755 . . . 4 (𝜑 → ran 𝐴 ⊆ On)
14 ssonuni 7815 . . . 4 (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (𝜑 ran 𝐴 ∈ On)
16 onsuc 7847 . . 3 ( ran 𝐴 ∈ On → suc ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (𝜑 → suc ran 𝐴 ∈ On)
18 onsucuni 7864 . . . . 5 (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ran 𝐴)
1913, 18syl 17 . . . 4 (𝜑 → ran 𝐴 ⊆ suc ran 𝐴)
20 f1ssr 6823 . . . 4 ((𝐴:𝑁1-1→On ∧ ran 𝐴 ⊆ suc ran 𝐴) → 𝐴:𝑁1-1→suc ran 𝐴)
211, 19, 20syl2anc 583 . . 3 (𝜑𝐴:𝑁1-1→suc ran 𝐴)
22 cantnfub2.m . . 3 (𝜑𝑀:𝑁⟶ω)
23 cantnfub2.f . . 3 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
2417, 4, 21, 22, 23cantnfub 43283 . 2 (𝜑 → (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
25 3anass 1095 . 2 ((suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)) ↔ (suc ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴))))
2617, 24, 25sylanbrc 582 1 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  c0 4352  ifcif 4548   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  Oncon0 6395  suc csuc 6397   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  ωcom 7903  o coe 8521  Fincfn 9003   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-cnf 9731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator