![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cantnfub2 | Structured version Visualization version GIF version |
Description: Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
Ref | Expression |
---|---|
cantnfub2.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
cantnfub2.a | ⊢ (𝜑 → 𝐴:𝑁–1-1→On) |
cantnfub2.m | ⊢ (𝜑 → 𝑀:𝑁⟶ω) |
cantnfub2.f | ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) |
Ref | Expression |
---|---|
cantnfub2 | ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfub2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴:𝑁–1-1→On) | |
2 | f1fn 6818 | . . . . . . 7 ⊢ (𝐴:𝑁–1-1→On → 𝐴 Fn 𝑁) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 Fn 𝑁) |
4 | cantnfub2.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ω) | |
5 | nnfi 9233 | . . . . . . 7 ⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | fnfi 9244 | . . . . . 6 ⊢ ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Fin) | |
8 | 3, 6, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | rnfi 9408 | . . . . 5 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ∈ Fin) |
11 | f1f 6817 | . . . . . 6 ⊢ (𝐴:𝑁–1-1→On → 𝐴:𝑁⟶On) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴:𝑁⟶On) |
13 | 12 | frnd 6755 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ On) |
14 | ssonuni 7815 | . . . 4 ⊢ (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ∪ ran 𝐴 ∈ On)) | |
15 | 10, 13, 14 | sylc 65 | . . 3 ⊢ (𝜑 → ∪ ran 𝐴 ∈ On) |
16 | onsuc 7847 | . . 3 ⊢ (∪ ran 𝐴 ∈ On → suc ∪ ran 𝐴 ∈ On) | |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → suc ∪ ran 𝐴 ∈ On) |
18 | onsucuni 7864 | . . . . 5 ⊢ (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ∪ ran 𝐴) | |
19 | 13, 18 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ suc ∪ ran 𝐴) |
20 | f1ssr 6823 | . . . 4 ⊢ ((𝐴:𝑁–1-1→On ∧ ran 𝐴 ⊆ suc ∪ ran 𝐴) → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) | |
21 | 1, 19, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐴:𝑁–1-1→suc ∪ ran 𝐴) |
22 | cantnfub2.m | . . 3 ⊢ (𝜑 → 𝑀:𝑁⟶ω) | |
23 | cantnfub2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) | |
24 | 17, 4, 21, 22, 23 | cantnfub 43283 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
25 | 3anass 1095 | . 2 ⊢ ((suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)) ↔ (suc ∪ ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴)))) | |
26 | 17, 24, 25 | sylanbrc 582 | 1 ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Oncon0 6395 suc csuc 6397 Fn wfn 6568 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ↑o coe 8521 Fincfn 9003 CNF ccnf 9730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-oexp 8528 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-cnf 9731 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |