Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub2 Structured version   Visualization version   GIF version

Theorem cantnfub2 43425
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ran 𝐴) when (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.)
Hypotheses
Ref Expression
cantnfub2.n (𝜑𝑁 ∈ ω)
cantnfub2.a (𝜑𝐴:𝑁1-1→On)
cantnfub2.m (𝜑𝑀:𝑁⟶ω)
cantnfub2.f 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub2 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub2
StepHypRef Expression
1 cantnfub2.a . . . . . . 7 (𝜑𝐴:𝑁1-1→On)
2 f1fn 6720 . . . . . . 7 (𝐴:𝑁1-1→On → 𝐴 Fn 𝑁)
31, 2syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑁)
4 cantnfub2.n . . . . . . 7 (𝜑𝑁 ∈ ω)
5 nnfi 9077 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ Fin)
64, 5syl 17 . . . . . 6 (𝜑𝑁 ∈ Fin)
7 fnfi 9087 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
83, 6, 7syl2anc 584 . . . . 5 (𝜑𝐴 ∈ Fin)
9 rnfi 9224 . . . . 5 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
108, 9syl 17 . . . 4 (𝜑 → ran 𝐴 ∈ Fin)
11 f1f 6719 . . . . . 6 (𝐴:𝑁1-1→On → 𝐴:𝑁⟶On)
121, 11syl 17 . . . . 5 (𝜑𝐴:𝑁⟶On)
1312frnd 6659 . . . 4 (𝜑 → ran 𝐴 ⊆ On)
14 ssonuni 7713 . . . 4 (ran 𝐴 ∈ Fin → (ran 𝐴 ⊆ On → ran 𝐴 ∈ On))
1510, 13, 14sylc 65 . . 3 (𝜑 ran 𝐴 ∈ On)
16 onsuc 7743 . . 3 ( ran 𝐴 ∈ On → suc ran 𝐴 ∈ On)
1715, 16syl 17 . 2 (𝜑 → suc ran 𝐴 ∈ On)
18 onsucuni 7758 . . . . 5 (ran 𝐴 ⊆ On → ran 𝐴 ⊆ suc ran 𝐴)
1913, 18syl 17 . . . 4 (𝜑 → ran 𝐴 ⊆ suc ran 𝐴)
20 f1ssr 6725 . . . 4 ((𝐴:𝑁1-1→On ∧ ran 𝐴 ⊆ suc ran 𝐴) → 𝐴:𝑁1-1→suc ran 𝐴)
211, 19, 20syl2anc 584 . . 3 (𝜑𝐴:𝑁1-1→suc ran 𝐴)
22 cantnfub2.m . . 3 (𝜑𝑀:𝑁⟶ω)
23 cantnfub2.f . . 3 𝐹 = (𝑥 ∈ suc ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
2417, 4, 21, 22, 23cantnfub 43424 . 2 (𝜑 → (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
25 3anass 1094 . 2 ((suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)) ↔ (suc ran 𝐴 ∈ On ∧ (𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴))))
2617, 24, 25sylanbrc 583 1 (𝜑 → (suc ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ran 𝐴) ∧ ((ω CNF suc ran 𝐴)‘𝐹) ∈ (ω ↑o suc ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  c0 4280  ifcif 4472   cuni 4856  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  Oncon0 6306  suc csuc 6308   Fn wfn 6476  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  ωcom 7796  o coe 8384  Fincfn 8869   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator