MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruspgrb Structured version   Visualization version   GIF version

Theorem usgruspgrb 26354
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrb (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Distinct variable group:   𝑒,𝐺

Proof of Theorem usgruspgrb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 26351 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 edgusgr 26333 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑒) = 2))
32simprd 489 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (♯‘𝑒) = 2)
43ralrimiva 3113 . . 3 (𝐺 ∈ USGraph → ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2)
51, 4jca 507 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
6 edgval 26218 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
76a1i 11 . . . . . 6 (𝐺 ∈ USPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
87raleqdv 3292 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 ↔ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2))
9 eqid 2765 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2765 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
119, 10uspgrf 26327 . . . . . 6 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
12 f1f 6283 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1312frnd 6230 . . . . . . . . 9 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 ssel2 3756 . . . . . . . . . . . . . . 15 ((ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝑦 ∈ ran (iEdg‘𝐺)) → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1514expcom 402 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
16 fveqeq2 6384 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑦 → ((♯‘𝑒) = 2 ↔ (♯‘𝑦) = 2))
1716rspcv 3457 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (iEdg‘𝐺) → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (♯‘𝑦) = 2))
18 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1918breq1d 4819 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑦) ≤ 2))
2019elrab 3519 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2))
21 eldifi 3894 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑦 ∈ 𝒫 (Vtx‘𝐺))
2221anim1i 608 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
23 fveqeq2 6384 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((♯‘𝑥) = 2 ↔ (♯‘𝑦) = 2))
2423elrab 3519 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
2522, 24sylibr 225 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
2625ex 401 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2726adantr 472 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2820, 27sylbi 208 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2917, 28syl9 77 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3015, 29syld 47 . . . . . . . . . . . . 13 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3130com13 88 . . . . . . . . . . . 12 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3231imp 395 . . . . . . . . . . 11 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3332ssrdv 3767 . . . . . . . . . 10 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3433ex 401 . . . . . . . . 9 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3513, 34mpan9 502 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
36 f1ssr 6289 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3735, 36syldan 585 . . . . . . 7 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3837ex 401 . . . . . 6 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3911, 38syl 17 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
408, 39sylbid 231 . . . 4 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4140imp 395 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
429, 10isusgrs 26329 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4342adantr 472 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4441, 43mpbird 248 . 2 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → 𝐺 ∈ USGraph)
455, 44impbii 200 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  cdif 3729  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334   class class class wbr 4809  dom cdm 5277  ran crn 5278  1-1wf1 6065  cfv 6068  cle 10329  2c2 11327  chash 13321  Vtxcvtx 26165  iEdgciedg 26166  Edgcedg 26216  USPGraphcuspgr 26321  USGraphcusgr 26322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-hash 13322  df-edg 26217  df-uspgr 26323  df-usgr 26324
This theorem is referenced by:  usgr1e  26416
  Copyright terms: Public domain W3C validator