MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruspgrb Structured version   Visualization version   GIF version

Theorem usgruspgrb 29068
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrb (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Distinct variable group:   𝑒,𝐺

Proof of Theorem usgruspgrb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 29065 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 edgusgr 29045 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑒) = 2))
32simprd 494 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (♯‘𝑒) = 2)
43ralrimiva 3135 . . 3 (𝐺 ∈ USGraph → ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2)
51, 4jca 510 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
6 edgval 28934 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
76a1i 11 . . . . . 6 (𝐺 ∈ USPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
87raleqdv 3314 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 ↔ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2))
9 eqid 2725 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2725 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
119, 10uspgrf 29039 . . . . . 6 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
12 f1f 6793 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1312frnd 6731 . . . . . . . . 9 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 ssel2 3971 . . . . . . . . . . . . . . 15 ((ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝑦 ∈ ran (iEdg‘𝐺)) → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1514expcom 412 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
16 fveqeq2 6905 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑦 → ((♯‘𝑒) = 2 ↔ (♯‘𝑦) = 2))
1716rspcv 3602 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (iEdg‘𝐺) → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (♯‘𝑦) = 2))
18 fveq2 6896 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1918breq1d 5159 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑦) ≤ 2))
2019elrab 3679 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2))
21 eldifi 4123 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑦 ∈ 𝒫 (Vtx‘𝐺))
2221anim1i 613 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
23 fveqeq2 6905 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((♯‘𝑥) = 2 ↔ (♯‘𝑦) = 2))
2423elrab 3679 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
2522, 24sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
2625ex 411 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2726adantr 479 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2820, 27sylbi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2917, 28syl9 77 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3015, 29syld 47 . . . . . . . . . . . . 13 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3130com13 88 . . . . . . . . . . . 12 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3231imp 405 . . . . . . . . . . 11 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3332ssrdv 3982 . . . . . . . . . 10 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3433ex 411 . . . . . . . . 9 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3513, 34mpan9 505 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
36 f1ssr 6799 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3735, 36syldan 589 . . . . . . 7 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3837ex 411 . . . . . 6 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3911, 38syl 17 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
408, 39sylbid 239 . . . 4 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4140imp 405 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
429, 10isusgrs 29041 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4342adantr 479 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4441, 43mpbird 256 . 2 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → 𝐺 ∈ USGraph)
455, 44impbii 208 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  cdif 3941  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630   class class class wbr 5149  dom cdm 5678  ran crn 5679  1-1wf1 6546  cfv 6549  cle 11281  2c2 12300  chash 14325  Vtxcvtx 28881  iEdgciedg 28882  Edgcedg 28932  USPGraphcuspgr 29033  USGraphcusgr 29034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-hash 14326  df-edg 28933  df-uspgr 29035  df-usgr 29036
This theorem is referenced by:  usgr1e  29130
  Copyright terms: Public domain W3C validator