MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruspgrb Structured version   Visualization version   GIF version

Theorem usgruspgrb 27454
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrb (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Distinct variable group:   𝑒,𝐺

Proof of Theorem usgruspgrb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 27451 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 edgusgr 27433 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑒) = 2))
32simprd 495 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (♯‘𝑒) = 2)
43ralrimiva 3107 . . 3 (𝐺 ∈ USGraph → ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2)
51, 4jca 511 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
6 edgval 27322 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
76a1i 11 . . . . . 6 (𝐺 ∈ USPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
87raleqdv 3339 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 ↔ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2))
9 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2738 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
119, 10uspgrf 27427 . . . . . 6 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
12 f1f 6654 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1312frnd 6592 . . . . . . . . 9 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
14 ssel2 3912 . . . . . . . . . . . . . . 15 ((ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝑦 ∈ ran (iEdg‘𝐺)) → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1514expcom 413 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
16 fveqeq2 6765 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑦 → ((♯‘𝑒) = 2 ↔ (♯‘𝑦) = 2))
1716rspcv 3547 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (iEdg‘𝐺) → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (♯‘𝑦) = 2))
18 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1918breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝑦) ≤ 2))
2019elrab 3617 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2))
21 eldifi 4057 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑦 ∈ 𝒫 (Vtx‘𝐺))
2221anim1i 614 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
23 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((♯‘𝑥) = 2 ↔ (♯‘𝑦) = 2))
2423elrab 3617 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} ↔ (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝑦) = 2))
2522, 24sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) = 2) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
2625ex 412 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2726adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝑦) ≤ 2) → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2820, 27sylbi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ((♯‘𝑦) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
2917, 28syl9 77 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (𝑦 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3015, 29syld 47 . . . . . . . . . . . . 13 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3130com13 88 . . . . . . . . . . . 12 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})))
3231imp 406 . . . . . . . . . . 11 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3332ssrdv 3923 . . . . . . . . . 10 ((∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3433ex 412 . . . . . . . . 9 (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3513, 34mpan9 506 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
36 f1ssr 6661 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3735, 36syldan 590 . . . . . . 7 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
3837ex 412 . . . . . 6 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
3911, 38syl 17 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ ran (iEdg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
408, 39sylbid 239 . . . 4 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2 → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4140imp 406 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
429, 10isusgrs 27429 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4342adantr 480 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}))
4441, 43mpbird 256 . 2 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2) → 𝐺 ∈ USGraph)
455, 44impbii 208 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)(♯‘𝑒) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  dom cdm 5580  ran crn 5581  1-1wf1 6415  cfv 6418  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  USPGraphcuspgr 27421  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-uspgr 27423  df-usgr 27424
This theorem is referenced by:  usgr1e  27515
  Copyright terms: Public domain W3C validator