MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ss Structured version   Visualization version   GIF version

Theorem f1ss 6724
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 6719 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fss 6667 . . 3 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
31, 2sylan 580 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
4 df-f1 6486 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 496 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65adantr 480 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → Fun 𝐹)
7 df-f1 6486 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
83, 6, 7sylanbrc 583 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3902  ccnv 5615  Fun wfun 6475  wf 6477  1-1wf1 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3919  df-f 6485  df-f1 6486
This theorem is referenced by:  f1un  6783  f1sng  6805  f1prex  7218  domssr  8921  domssex2  9050  ssdomfi  9105  ssdomfi2  9106  marypha1lem  9317  marypha2  9323  isinffi  9885  fseqenlem1  9915  dfac12r  10038  ackbij2  10133  cff1  10149  fin23lem28  10231  fin23lem41  10243  pwfseqlem5  10554  hashf1lem1  14362  gsumzres  19822  gsumzcl2  19823  gsumzf1o  19825  gsumzaddlem  19834  gsumzmhm  19850  gsumzoppg  19857  lindfres  21761  islindf3  21764  dvne0f1  25945  istrkg2ld  28439  ausgrusgrb  29144  uspgrushgr  29156  usgruspgr  29159  uspgr1e  29223  sizusglecusglem1  29441  s1f1  32922  s2f1  32924  qqhre  34031  erdsze2lem1  35245  eldioph2lem2  42800  eldioph2  42801  fundcmpsurbijinjpreimafv  47444  fundcmpsurinjimaid  47448  stgrusgra  47996  usgrexmpl1lem  48058  usgrexmpl2lem  48063  gpgusgra  48094
  Copyright terms: Public domain W3C validator