![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6787 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6734 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6548 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6548 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3948 ◡ccnv 5675 Fun wfun 6537 ⟶wf 6539 –1-1→wf1 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-f 6547 df-f1 6548 |
This theorem is referenced by: f1un 6853 f1sng 6875 f1prex 7285 domssr 9001 domssex2 9143 ssdomfi 9205 ssdomfi2 9206 1sdomOLD 9255 marypha1lem 9434 marypha2 9440 isinffi 9993 fseqenlem1 10025 dfac12r 10147 ackbij2 10244 cff1 10259 fin23lem28 10341 fin23lem41 10353 pwfseqlem5 10664 hashf1lem1 14422 hashf1lem1OLD 14423 gsumzres 19825 gsumzcl2 19826 gsumzf1o 19828 gsumzaddlem 19837 gsumzmhm 19853 gsumzoppg 19860 lindfres 21688 islindf3 21691 dvne0f1 25865 istrkg2ld 28144 ausgrusgrb 28858 uspgrushgr 28868 usgruspgr 28871 uspgr1e 28934 sizusglecusglem1 29151 s1f1 32542 s2f1 32544 qqhre 33464 erdsze2lem1 34658 eldioph2lem2 41962 eldioph2 41963 fundcmpsurbijinjpreimafv 46534 fundcmpsurinjimaid 46538 |
Copyright terms: Public domain | W3C validator |