| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6726 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6674 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6493 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6493 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 ◡ccnv 5620 Fun wfun 6482 ⟶wf 6484 –1-1→wf1 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3915 df-f 6492 df-f1 6493 |
| This theorem is referenced by: f1un 6790 f1sng 6813 f1prex 7226 domssr 8930 domssex2 9059 ssdomfi 9114 ssdomfi2 9115 marypha1lem 9326 marypha2 9332 isinffi 9894 fseqenlem1 9924 dfac12r 10047 ackbij2 10142 cff1 10158 fin23lem28 10240 fin23lem41 10252 pwfseqlem5 10563 hashf1lem1 14366 gsumzres 19825 gsumzcl2 19826 gsumzf1o 19828 gsumzaddlem 19837 gsumzmhm 19853 gsumzoppg 19860 lindfres 21764 islindf3 21767 dvne0f1 25947 istrkg2ld 28441 ausgrusgrb 29147 uspgrushgr 29159 usgruspgr 29162 uspgr1e 29226 sizusglecusglem1 29444 s1f1 32933 s2f1 32935 qqhre 34056 erdsze2lem1 35270 eldioph2lem2 42881 eldioph2 42882 fundcmpsurbijinjpreimafv 47534 fundcmpsurinjimaid 47538 stgrusgra 48086 usgrexmpl1lem 48148 usgrexmpl2lem 48153 gpgusgra 48184 |
| Copyright terms: Public domain | W3C validator |