| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6756 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6704 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6516 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6516 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 ◡ccnv 5637 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3931 df-f 6515 df-f1 6516 |
| This theorem is referenced by: f1un 6820 f1sng 6842 f1prex 7259 domssr 8970 domssex2 9101 ssdomfi 9160 ssdomfi2 9161 1sdomOLD 9196 marypha1lem 9384 marypha2 9390 isinffi 9945 fseqenlem1 9977 dfac12r 10100 ackbij2 10195 cff1 10211 fin23lem28 10293 fin23lem41 10305 pwfseqlem5 10616 hashf1lem1 14420 gsumzres 19839 gsumzcl2 19840 gsumzf1o 19842 gsumzaddlem 19851 gsumzmhm 19867 gsumzoppg 19874 lindfres 21732 islindf3 21735 dvne0f1 25917 istrkg2ld 28387 ausgrusgrb 29092 uspgrushgr 29104 usgruspgr 29107 uspgr1e 29171 sizusglecusglem1 29389 s1f1 32864 s2f1 32866 qqhre 34010 erdsze2lem1 35190 eldioph2lem2 42749 eldioph2 42750 fundcmpsurbijinjpreimafv 47408 fundcmpsurinjimaid 47412 stgrusgra 47958 usgrexmpl1lem 48012 usgrexmpl2lem 48017 gpgusgra 48048 |
| Copyright terms: Public domain | W3C validator |