![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6817 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6763 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6578 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6578 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 ◡ccnv 5699 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1un 6882 f1sng 6904 f1prex 7320 domssr 9059 domssex2 9203 ssdomfi 9262 ssdomfi2 9263 1sdomOLD 9312 marypha1lem 9502 marypha2 9508 isinffi 10061 fseqenlem1 10093 dfac12r 10216 ackbij2 10311 cff1 10327 fin23lem28 10409 fin23lem41 10421 pwfseqlem5 10732 hashf1lem1 14504 gsumzres 19951 gsumzcl2 19952 gsumzf1o 19954 gsumzaddlem 19963 gsumzmhm 19979 gsumzoppg 19986 lindfres 21866 islindf3 21869 dvne0f1 26071 istrkg2ld 28486 ausgrusgrb 29200 uspgrushgr 29212 usgruspgr 29215 uspgr1e 29279 sizusglecusglem1 29497 s1f1 32909 s2f1 32911 qqhre 33966 erdsze2lem1 35171 eldioph2lem2 42717 eldioph2 42718 fundcmpsurbijinjpreimafv 47281 fundcmpsurinjimaid 47285 usgrexmpl1lem 47836 usgrexmpl2lem 47841 |
Copyright terms: Public domain | W3C validator |