![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6784 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6731 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6545 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6545 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3947 ◡ccnv 5674 Fun wfun 6534 ⟶wf 6536 –1-1→wf1 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-f 6544 df-f1 6545 |
This theorem is referenced by: f1un 6850 f1sng 6872 f1prex 7278 domssr 8991 domssex2 9133 ssdomfi 9195 ssdomfi2 9196 1sdomOLD 9245 marypha1lem 9424 marypha2 9430 isinffi 9983 fseqenlem1 10015 dfac12r 10137 ackbij2 10234 cff1 10249 fin23lem28 10331 fin23lem41 10343 pwfseqlem5 10654 hashf1lem1 14411 hashf1lem1OLD 14412 gsumzres 19771 gsumzcl2 19772 gsumzf1o 19774 gsumzaddlem 19783 gsumzmhm 19799 gsumzoppg 19806 lindfres 21369 islindf3 21372 dvne0f1 25520 istrkg2ld 27700 ausgrusgrb 28414 uspgrushgr 28424 usgruspgr 28427 uspgr1e 28490 sizusglecusglem1 28707 s1f1 32096 s2f1 32098 qqhre 32988 erdsze2lem1 34182 eldioph2lem2 41484 eldioph2 41485 fundcmpsurbijinjpreimafv 46061 fundcmpsurinjimaid 46065 |
Copyright terms: Public domain | W3C validator |