| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6724 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6672 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6491 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6491 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 ◡ccnv 5622 Fun wfun 6480 ⟶wf 6482 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3922 df-f 6490 df-f1 6491 |
| This theorem is referenced by: f1un 6788 f1sng 6810 f1prex 7225 domssr 8931 domssex2 9061 ssdomfi 9120 ssdomfi2 9121 marypha1lem 9342 marypha2 9348 isinffi 9907 fseqenlem1 9937 dfac12r 10060 ackbij2 10155 cff1 10171 fin23lem28 10253 fin23lem41 10265 pwfseqlem5 10576 hashf1lem1 14380 gsumzres 19806 gsumzcl2 19807 gsumzf1o 19809 gsumzaddlem 19818 gsumzmhm 19834 gsumzoppg 19841 lindfres 21748 islindf3 21751 dvne0f1 25933 istrkg2ld 28423 ausgrusgrb 29128 uspgrushgr 29140 usgruspgr 29143 uspgr1e 29207 sizusglecusglem1 29425 s1f1 32897 s2f1 32899 qqhre 33989 erdsze2lem1 35178 eldioph2lem2 42737 eldioph2 42738 fundcmpsurbijinjpreimafv 47395 fundcmpsurinjimaid 47399 stgrusgra 47947 usgrexmpl1lem 48009 usgrexmpl2lem 48014 gpgusgra 48045 |
| Copyright terms: Public domain | W3C validator |