Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6560 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6512 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 583 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6340 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 500 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 484 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6340 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 586 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3858 ◡ccnv 5523 Fun wfun 6329 ⟶wf 6331 –1-1→wf1 6332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-f 6339 df-f1 6340 |
This theorem is referenced by: f1sng 6643 f1prex 7032 domssex2 8699 1sdom 8759 marypha1lem 8930 marypha2 8936 isinffi 9454 fseqenlem1 9484 dfac12r 9606 ackbij2 9703 cff1 9718 fin23lem28 9800 fin23lem41 9812 pwfseqlem5 10123 hashf1lem1 13864 hashf1lem1OLD 13865 gsumzres 19097 gsumzcl2 19098 gsumzf1o 19100 gsumzaddlem 19109 gsumzmhm 19125 gsumzoppg 19132 lindfres 20588 islindf3 20591 dvne0f1 24711 istrkg2ld 26353 ausgrusgrb 27057 uspgrushgr 27067 usgruspgr 27070 uspgr1e 27133 sizusglecusglem1 27350 s1f1 30741 s2f1 30743 qqhre 31489 erdsze2lem1 32681 eldioph2lem2 40097 eldioph2 40098 fundcmpsurbijinjpreimafv 44314 fundcmpsurinjimaid 44318 |
Copyright terms: Public domain | W3C validator |