MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ss Structured version   Visualization version   GIF version

Theorem f1ss 6764
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 6759 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fss 6707 . . 3 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
31, 2sylan 580 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
4 df-f1 6519 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 496 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65adantr 480 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → Fun 𝐹)
7 df-f1 6519 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
83, 6, 7sylanbrc 583 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3917  ccnv 5640  Fun wfun 6508  wf 6510  1-1wf1 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3934  df-f 6518  df-f1 6519
This theorem is referenced by:  f1un  6823  f1sng  6845  f1prex  7262  domssr  8973  domssex2  9107  ssdomfi  9166  ssdomfi2  9167  1sdomOLD  9203  marypha1lem  9391  marypha2  9397  isinffi  9952  fseqenlem1  9984  dfac12r  10107  ackbij2  10202  cff1  10218  fin23lem28  10300  fin23lem41  10312  pwfseqlem5  10623  hashf1lem1  14427  gsumzres  19846  gsumzcl2  19847  gsumzf1o  19849  gsumzaddlem  19858  gsumzmhm  19874  gsumzoppg  19881  lindfres  21739  islindf3  21742  dvne0f1  25924  istrkg2ld  28394  ausgrusgrb  29099  uspgrushgr  29111  usgruspgr  29114  uspgr1e  29178  sizusglecusglem1  29396  s1f1  32871  s2f1  32873  qqhre  34017  erdsze2lem1  35197  eldioph2lem2  42756  eldioph2  42757  fundcmpsurbijinjpreimafv  47412  fundcmpsurinjimaid  47416  stgrusgra  47962  usgrexmpl1lem  48016  usgrexmpl2lem  48021  gpgusgra  48052
  Copyright terms: Public domain W3C validator