| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6759 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6707 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6519 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6519 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 ◡ccnv 5640 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3934 df-f 6518 df-f1 6519 |
| This theorem is referenced by: f1un 6823 f1sng 6845 f1prex 7262 domssr 8973 domssex2 9107 ssdomfi 9166 ssdomfi2 9167 1sdomOLD 9203 marypha1lem 9391 marypha2 9397 isinffi 9952 fseqenlem1 9984 dfac12r 10107 ackbij2 10202 cff1 10218 fin23lem28 10300 fin23lem41 10312 pwfseqlem5 10623 hashf1lem1 14427 gsumzres 19846 gsumzcl2 19847 gsumzf1o 19849 gsumzaddlem 19858 gsumzmhm 19874 gsumzoppg 19881 lindfres 21739 islindf3 21742 dvne0f1 25924 istrkg2ld 28394 ausgrusgrb 29099 uspgrushgr 29111 usgruspgr 29114 uspgr1e 29178 sizusglecusglem1 29396 s1f1 32871 s2f1 32873 qqhre 34017 erdsze2lem1 35197 eldioph2lem2 42756 eldioph2 42757 fundcmpsurbijinjpreimafv 47412 fundcmpsurinjimaid 47416 stgrusgra 47962 usgrexmpl1lem 48016 usgrexmpl2lem 48021 gpgusgra 48052 |
| Copyright terms: Public domain | W3C validator |