| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6774 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6722 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6536 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6536 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 ◡ccnv 5653 Fun wfun 6525 ⟶wf 6527 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3943 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f1un 6838 f1sng 6860 f1prex 7277 domssr 9013 domssex2 9151 ssdomfi 9210 ssdomfi2 9211 1sdomOLD 9257 marypha1lem 9445 marypha2 9451 isinffi 10006 fseqenlem1 10038 dfac12r 10161 ackbij2 10256 cff1 10272 fin23lem28 10354 fin23lem41 10366 pwfseqlem5 10677 hashf1lem1 14473 gsumzres 19890 gsumzcl2 19891 gsumzf1o 19893 gsumzaddlem 19902 gsumzmhm 19918 gsumzoppg 19925 lindfres 21783 islindf3 21786 dvne0f1 25969 istrkg2ld 28439 ausgrusgrb 29144 uspgrushgr 29156 usgruspgr 29159 uspgr1e 29223 sizusglecusglem1 29441 s1f1 32918 s2f1 32920 qqhre 34051 erdsze2lem1 35225 eldioph2lem2 42784 eldioph2 42785 fundcmpsurbijinjpreimafv 47421 fundcmpsurinjimaid 47425 stgrusgra 47971 usgrexmpl1lem 48025 usgrexmpl2lem 48030 gpgusgra 48061 |
| Copyright terms: Public domain | W3C validator |