![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6788 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6735 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 581 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6549 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 498 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 482 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6549 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 584 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ⊆ wss 3949 ◡ccnv 5676 Fun wfun 6538 ⟶wf 6540 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-f 6548 df-f1 6549 |
This theorem is referenced by: f1un 6854 f1sng 6876 f1prex 7282 domssr 8995 domssex2 9137 ssdomfi 9199 ssdomfi2 9200 1sdomOLD 9249 marypha1lem 9428 marypha2 9434 isinffi 9987 fseqenlem1 10019 dfac12r 10141 ackbij2 10238 cff1 10253 fin23lem28 10335 fin23lem41 10347 pwfseqlem5 10658 hashf1lem1 14415 hashf1lem1OLD 14416 gsumzres 19777 gsumzcl2 19778 gsumzf1o 19780 gsumzaddlem 19789 gsumzmhm 19805 gsumzoppg 19812 lindfres 21378 islindf3 21381 dvne0f1 25529 istrkg2ld 27711 ausgrusgrb 28425 uspgrushgr 28435 usgruspgr 28438 uspgr1e 28501 sizusglecusglem1 28718 s1f1 32109 s2f1 32111 qqhre 33000 erdsze2lem1 34194 eldioph2lem2 41499 eldioph2 41500 fundcmpsurbijinjpreimafv 46075 fundcmpsurinjimaid 46079 |
Copyright terms: Public domain | W3C validator |