| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version | ||
| Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6719 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | fss 6667 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
| 4 | df-f1 6486 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
| 7 | df-f1 6486 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 ◡ccnv 5615 Fun wfun 6475 ⟶wf 6477 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3919 df-f 6485 df-f1 6486 |
| This theorem is referenced by: f1un 6783 f1sng 6805 f1prex 7218 domssr 8921 domssex2 9050 ssdomfi 9105 ssdomfi2 9106 marypha1lem 9317 marypha2 9323 isinffi 9885 fseqenlem1 9915 dfac12r 10038 ackbij2 10133 cff1 10149 fin23lem28 10231 fin23lem41 10243 pwfseqlem5 10554 hashf1lem1 14362 gsumzres 19822 gsumzcl2 19823 gsumzf1o 19825 gsumzaddlem 19834 gsumzmhm 19850 gsumzoppg 19857 lindfres 21761 islindf3 21764 dvne0f1 25945 istrkg2ld 28439 ausgrusgrb 29144 uspgrushgr 29156 usgruspgr 29159 uspgr1e 29223 sizusglecusglem1 29441 s1f1 32922 s2f1 32924 qqhre 34031 erdsze2lem1 35245 eldioph2lem2 42800 eldioph2 42801 fundcmpsurbijinjpreimafv 47444 fundcmpsurinjimaid 47448 stgrusgra 47996 usgrexmpl1lem 48058 usgrexmpl2lem 48063 gpgusgra 48094 |
| Copyright terms: Public domain | W3C validator |