MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ss Structured version   Visualization version   GIF version

Theorem f1ss 6676
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 6670 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fss 6617 . . 3 ((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
31, 2sylan 580 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
4 df-f1 6438 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 497 . . 3 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
65adantr 481 . 2 ((𝐹:𝐴1-1𝐵𝐵𝐶) → Fun 𝐹)
7 df-f1 6438 . 2 (𝐹:𝐴1-1𝐶 ↔ (𝐹:𝐴𝐶 ∧ Fun 𝐹))
83, 6, 7sylanbrc 583 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wss 3887  ccnv 5588  Fun wfun 6427  wf 6429  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-f 6437  df-f1 6438
This theorem is referenced by:  f1un  6736  f1sng  6758  f1prex  7156  domssex2  8924  ssdomfi  8982  ssdomfi2  8983  1sdom  9025  marypha1lem  9192  marypha2  9198  isinffi  9750  fseqenlem1  9780  dfac12r  9902  ackbij2  9999  cff1  10014  fin23lem28  10096  fin23lem41  10108  pwfseqlem5  10419  hashf1lem1  14168  hashf1lem1OLD  14169  gsumzres  19510  gsumzcl2  19511  gsumzf1o  19513  gsumzaddlem  19522  gsumzmhm  19538  gsumzoppg  19545  lindfres  21030  islindf3  21033  dvne0f1  25176  istrkg2ld  26821  ausgrusgrb  27535  uspgrushgr  27545  usgruspgr  27548  uspgr1e  27611  sizusglecusglem1  27828  s1f1  31217  s2f1  31219  qqhre  31970  erdsze2lem1  33165  eldioph2lem2  40583  eldioph2  40584  fundcmpsurbijinjpreimafv  44859  fundcmpsurinjimaid  44863
  Copyright terms: Public domain W3C validator