Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6670 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6617 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6438 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6438 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3887 ◡ccnv 5588 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 df-f1 6438 |
This theorem is referenced by: f1un 6736 f1sng 6758 f1prex 7156 domssex2 8924 ssdomfi 8982 ssdomfi2 8983 1sdom 9025 marypha1lem 9192 marypha2 9198 isinffi 9750 fseqenlem1 9780 dfac12r 9902 ackbij2 9999 cff1 10014 fin23lem28 10096 fin23lem41 10108 pwfseqlem5 10419 hashf1lem1 14168 hashf1lem1OLD 14169 gsumzres 19510 gsumzcl2 19511 gsumzf1o 19513 gsumzaddlem 19522 gsumzmhm 19538 gsumzoppg 19545 lindfres 21030 islindf3 21033 dvne0f1 25176 istrkg2ld 26821 ausgrusgrb 27535 uspgrushgr 27545 usgruspgr 27548 uspgr1e 27611 sizusglecusglem1 27828 s1f1 31217 s2f1 31219 qqhre 31970 erdsze2lem1 33165 eldioph2lem2 40583 eldioph2 40584 fundcmpsurbijinjpreimafv 44859 fundcmpsurinjimaid 44863 |
Copyright terms: Public domain | W3C validator |