Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6654 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6601 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6423 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6423 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3883 ◡ccnv 5579 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-f1 6423 |
This theorem is referenced by: f1sng 6741 f1prex 7136 domssex2 8873 ssdomfi 8940 1sdom 8955 marypha1lem 9122 marypha2 9128 isinffi 9681 fseqenlem1 9711 dfac12r 9833 ackbij2 9930 cff1 9945 fin23lem28 10027 fin23lem41 10039 pwfseqlem5 10350 hashf1lem1 14096 hashf1lem1OLD 14097 gsumzres 19425 gsumzcl2 19426 gsumzf1o 19428 gsumzaddlem 19437 gsumzmhm 19453 gsumzoppg 19460 lindfres 20940 islindf3 20943 dvne0f1 25081 istrkg2ld 26725 ausgrusgrb 27438 uspgrushgr 27448 usgruspgr 27451 uspgr1e 27514 sizusglecusglem1 27731 s1f1 31119 s2f1 31121 qqhre 31870 erdsze2lem1 33065 eldioph2lem2 40499 eldioph2 40500 fundcmpsurbijinjpreimafv 44747 fundcmpsurinjimaid 44751 |
Copyright terms: Public domain | W3C validator |