![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ss | Structured version Visualization version GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6804 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fss 6752 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴⟶𝐶) |
4 | df-f1 6567 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → Fun ◡𝐹) |
7 | df-f1 6567 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3962 ◡ccnv 5687 Fun wfun 6556 ⟶wf 6558 –1-1→wf1 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3979 df-f 6566 df-f1 6567 |
This theorem is referenced by: f1un 6868 f1sng 6890 f1prex 7303 domssr 9037 domssex2 9175 ssdomfi 9233 ssdomfi2 9234 1sdomOLD 9282 marypha1lem 9470 marypha2 9476 isinffi 10029 fseqenlem1 10061 dfac12r 10184 ackbij2 10279 cff1 10295 fin23lem28 10377 fin23lem41 10389 pwfseqlem5 10700 hashf1lem1 14490 gsumzres 19941 gsumzcl2 19942 gsumzf1o 19944 gsumzaddlem 19953 gsumzmhm 19969 gsumzoppg 19976 lindfres 21860 islindf3 21863 dvne0f1 26065 istrkg2ld 28482 ausgrusgrb 29196 uspgrushgr 29208 usgruspgr 29211 uspgr1e 29275 sizusglecusglem1 29493 s1f1 32911 s2f1 32913 qqhre 33982 erdsze2lem1 35187 eldioph2lem2 42748 eldioph2 42749 fundcmpsurbijinjpreimafv 47331 fundcmpsurinjimaid 47335 stgrusgra 47861 usgrexmpl1lem 47915 usgrexmpl2lem 47920 gpgusgra 47946 |
Copyright terms: Public domain | W3C validator |