MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha1 Structured version   Visualization version   GIF version

Theorem marypha1 9474
Description: (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha1.a (𝜑𝐴 ∈ Fin)
marypha1.b (𝜑𝐵 ∈ Fin)
marypha1.c (𝜑𝐶 ⊆ (𝐴 × 𝐵))
marypha1.d ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
Assertion
Ref Expression
marypha1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝜑,𝑑,𝑓   𝐴,𝑑,𝑓   𝐶,𝑑,𝑓
Allowed substitution hints:   𝐵(𝑓,𝑑)

Proof of Theorem marypha1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4607 . . . . 5 (𝑑 ∈ 𝒫 𝐴𝑑𝐴)
2 marypha1.d . . . . 5 ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
31, 2sylan2 593 . . . 4 ((𝜑𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶𝑑))
43ralrimiva 3146 . . 3 (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑))
5 imaeq1 6073 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝑑) = (𝐶𝑑))
65breq2d 5155 . . . . . 6 (𝑐 = 𝐶 → (𝑑 ≼ (𝑐𝑑) ↔ 𝑑 ≼ (𝐶𝑑)))
76ralbidv 3178 . . . . 5 (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑)))
8 pweq 4614 . . . . . 6 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
98rexeqdv 3327 . . . . 5 (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
107, 9imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)))
11 marypha1.b . . . . 5 (𝜑𝐵 ∈ Fin)
12 marypha1.a . . . . 5 (𝜑𝐴 ∈ Fin)
13 xpeq2 5706 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵))
1413pweqd 4617 . . . . . . . 8 (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵))
1514raleqdv 3326 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1615imbi2d 340 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))))
17 marypha1lem 9473 . . . . . . 7 (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1817com12 32 . . . . . 6 (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1916, 18vtoclga 3577 . . . . 5 (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
2011, 12, 19sylc 65 . . . 4 (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))
2112, 11xpexd 7771 . . . . 5 (𝜑 → (𝐴 × 𝐵) ∈ V)
22 marypha1.c . . . . 5 (𝜑𝐶 ⊆ (𝐴 × 𝐵))
2321, 22sselpwd 5328 . . . 4 (𝜑𝐶 ∈ 𝒫 (𝐴 × 𝐵))
2410, 20, 23rspcdva 3623 . . 3 (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
254, 24mpd 15 . 2 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)
26 elpwi 4607 . . . . . . 7 (𝑓 ∈ 𝒫 𝐶𝑓𝐶)
2726, 22sylan9ssr 3998 . . . . . 6 ((𝜑𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵))
28 rnss 5950 . . . . . 6 (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
2927, 28syl 17 . . . . 5 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
30 rnxpss 6192 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
3129, 30sstrdi 3996 . . . 4 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓𝐵)
32 f1ssr 6810 . . . . 5 ((𝑓:𝐴1-1→V ∧ ran 𝑓𝐵) → 𝑓:𝐴1-1𝐵)
3332expcom 413 . . . 4 (ran 𝑓𝐵 → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3431, 33syl 17 . . 3 ((𝜑𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3534reximdva 3168 . 2 (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵))
3625, 35mpd 15 1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143   × cxp 5683  ran crn 5686  cima 5688  1-1wf1 6558  cdom 8983  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989
This theorem is referenced by:  marypha2  9479
  Copyright terms: Public domain W3C validator