| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4607 |
. . . . 5
⊢ (𝑑 ∈ 𝒫 𝐴 → 𝑑 ⊆ 𝐴) |
| 2 | | marypha1.d |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
| 3 | 1, 2 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
| 4 | 3 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑)) |
| 5 | | imaeq1 6073 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑐 “ 𝑑) = (𝐶 “ 𝑑)) |
| 6 | 5 | breq2d 5155 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑑 ≼ (𝑐 “ 𝑑) ↔ 𝑑 ≼ (𝐶 “ 𝑑))) |
| 7 | 6 | ralbidv 3178 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑))) |
| 8 | | pweq 4614 |
. . . . . 6
⊢ (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶) |
| 9 | 8 | rexeqdv 3327 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
| 10 | 7, 9 | imbi12d 344 |
. . . 4
⊢ (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V))) |
| 11 | | marypha1.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 12 | | marypha1.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 13 | | xpeq2 5706 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵)) |
| 14 | 13 | pweqd 4617 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
| 15 | 14 | raleqdv 3326 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 16 | 15 | imbi2d 340 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)))) |
| 17 | | marypha1lem 9473 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 18 | 17 | com12 32 |
. . . . . 6
⊢ (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 19 | 16, 18 | vtoclga 3577 |
. . . . 5
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 20 | 11, 12, 19 | sylc 65 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) |
| 21 | 12, 11 | xpexd 7771 |
. . . . 5
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 22 | | marypha1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ (𝐴 × 𝐵)) |
| 23 | 21, 22 | sselpwd 5328 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝒫 (𝐴 × 𝐵)) |
| 24 | 10, 20, 23 | rspcdva 3623 |
. . 3
⊢ (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
| 25 | 4, 24 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V) |
| 26 | | elpwi 4607 |
. . . . . . 7
⊢ (𝑓 ∈ 𝒫 𝐶 → 𝑓 ⊆ 𝐶) |
| 27 | 26, 22 | sylan9ssr 3998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵)) |
| 28 | | rnss 5950 |
. . . . . 6
⊢ (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
| 30 | | rnxpss 6192 |
. . . . 5
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
| 31 | 29, 30 | sstrdi 3996 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ 𝐵) |
| 32 | | f1ssr 6810 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→V ∧ ran 𝑓 ⊆ 𝐵) → 𝑓:𝐴–1-1→𝐵) |
| 33 | 32 | expcom 413 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝐵 → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
| 34 | 31, 33 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
| 35 | 34 | reximdva 3168 |
. 2
⊢ (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵)) |
| 36 | 25, 35 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵) |