Step | Hyp | Ref
| Expression |
1 | | elpwi 4542 |
. . . . 5
⊢ (𝑑 ∈ 𝒫 𝐴 → 𝑑 ⊆ 𝐴) |
2 | | marypha1.d |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
3 | 1, 2 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
4 | 3 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑)) |
5 | | imaeq1 5964 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑐 “ 𝑑) = (𝐶 “ 𝑑)) |
6 | 5 | breq2d 5086 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑑 ≼ (𝑐 “ 𝑑) ↔ 𝑑 ≼ (𝐶 “ 𝑑))) |
7 | 6 | ralbidv 3112 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑))) |
8 | | pweq 4549 |
. . . . . 6
⊢ (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶) |
9 | 8 | rexeqdv 3349 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
10 | 7, 9 | imbi12d 345 |
. . . 4
⊢ (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V))) |
11 | | marypha1.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
12 | | marypha1.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
13 | | xpeq2 5610 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵)) |
14 | 13 | pweqd 4552 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
15 | 14 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)))) |
17 | | marypha1lem 9192 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
18 | 17 | com12 32 |
. . . . . 6
⊢ (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
19 | 16, 18 | vtoclga 3513 |
. . . . 5
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
20 | 11, 12, 19 | sylc 65 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) |
21 | 12, 11 | xpexd 7601 |
. . . . 5
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
22 | | marypha1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ (𝐴 × 𝐵)) |
23 | 21, 22 | sselpwd 5250 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝒫 (𝐴 × 𝐵)) |
24 | 10, 20, 23 | rspcdva 3562 |
. . 3
⊢ (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
25 | 4, 24 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V) |
26 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑓 ∈ 𝒫 𝐶 → 𝑓 ⊆ 𝐶) |
27 | 26, 22 | sylan9ssr 3935 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵)) |
28 | | rnss 5848 |
. . . . . 6
⊢ (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
29 | 27, 28 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
30 | | rnxpss 6075 |
. . . . 5
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
31 | 29, 30 | sstrdi 3933 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ 𝐵) |
32 | | f1ssr 6677 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→V ∧ ran 𝑓 ⊆ 𝐵) → 𝑓:𝐴–1-1→𝐵) |
33 | 32 | expcom 414 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝐵 → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
34 | 31, 33 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
35 | 34 | reximdva 3203 |
. 2
⊢ (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵)) |
36 | 25, 35 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵) |