MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domdifsn Structured version   Visualization version   GIF version

Theorem domdifsn 8575
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domdifsn (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))

Proof of Theorem domdifsn
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8512 . . . . 5 (𝐴𝐵𝐴𝐵)
2 relsdom 8491 . . . . . . 7 Rel ≺
32brrelex2i 5582 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
4 brdomg 8494 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
61, 5mpbid 235 . . . 4 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
76adantr 484 . . 3 ((𝐴𝐵𝐶𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
8 f1f 6548 . . . . . . . 8 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
98frnd 6494 . . . . . . 7 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
109adantl 485 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
11 sdomnen 8513 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1211ad2antrr 725 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
13 vex 3474 . . . . . . . . . . 11 𝑓 ∈ V
14 dff1o5 6597 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
1514biimpri 231 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝑓:𝐴1-1-onto𝐵)
16 f1oen3g 8500 . . . . . . . . . . 11 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
1713, 15, 16sylancr 590 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝐴𝐵)
1817ex 416 . . . . . . . . 9 (𝑓:𝐴1-1𝐵 → (ran 𝑓 = 𝐵𝐴𝐵))
1918necon3bd 3021 . . . . . . . 8 (𝑓:𝐴1-1𝐵 → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2019adantl 485 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2112, 20mpd 15 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
22 pssdifn0 4298 . . . . . 6 ((ran 𝑓𝐵 ∧ ran 𝑓𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
2310, 21, 22syl2anc 587 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
24 n0 4283 . . . . 5 ((𝐵 ∖ ran 𝑓) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
2523, 24sylib 221 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
262brrelex1i 5581 . . . . . . . . 9 (𝐴𝐵𝐴 ∈ V)
2726ad2antrr 725 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ∈ V)
283ad2antrr 725 . . . . . . . . 9 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐵 ∈ V)
29 difexg 5204 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∖ {𝑥}) ∈ V)
3028, 29syl 17 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ∈ V)
31 eldifn 4080 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → ¬ 𝑥 ∈ ran 𝑓)
32 disjsn 4620 . . . . . . . . . . . . 13 ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝑓)
3331, 32sylibr 237 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → (ran 𝑓 ∩ {𝑥}) = ∅)
3433adantl 485 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → (ran 𝑓 ∩ {𝑥}) = ∅)
359adantr 484 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓𝐵)
36 reldisj 4375 . . . . . . . . . . . 12 (ran 𝑓𝐵 → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3735, 36syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3834, 37mpbid 235 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓 ⊆ (𝐵 ∖ {𝑥}))
39 f1ssr 6554 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
4038, 39syldan 594 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
4140adantl 485 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
42 f1dom2g 8502 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐵 ∖ {𝑥}) ∈ V ∧ 𝑓:𝐴1-1→(𝐵 ∖ {𝑥})) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
4327, 30, 41, 42syl3anc 1368 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
44 eldifi 4079 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝑥𝐵)
4544ad2antll 728 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑥𝐵)
46 simplr 768 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐶𝐵)
47 difsnen 8574 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑥𝐵𝐶𝐵) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
4828, 45, 46, 47syl3anc 1368 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
49 domentr 8543 . . . . . . 7 ((𝐴 ≼ (𝐵 ∖ {𝑥}) ∧ (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶})) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5043, 48, 49syl2anc 587 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5150expr 460 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5251exlimdv 1935 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5325, 52mpd 15 . . 3 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
547, 53exlimddv 1937 . 2 ((𝐴𝐵𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
551adantr 484 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴𝐵)
56 difsn 4704 . . . . 5 𝐶𝐵 → (𝐵 ∖ {𝐶}) = 𝐵)
5756breq2d 5051 . . . 4 𝐶𝐵 → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5857adantl 485 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5955, 58mpbird 260 . 2 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
6054, 59pm2.61dan 812 1 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3007  Vcvv 3471  cdif 3907  cin 3909  wss 3910  c0 4266  {csn 4540   class class class wbr 5039  ran crn 5529  1-1wf1 6325  1-1-ontowf1o 6327  cen 8481  cdom 8482  csdm 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-suc 6170  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-1o 8077  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487
This theorem is referenced by:  domunsn  8643  marypha1lem  8873
  Copyright terms: Public domain W3C validator