MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domdifsn Structured version   Visualization version   GIF version

Theorem domdifsn 8998
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domdifsn (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))

Proof of Theorem domdifsn
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8920 . . . . 5 (𝐴𝐵𝐴𝐵)
2 relsdom 8890 . . . . . . 7 Rel ≺
32brrelex2i 5689 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
4 brdomg 8896 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
61, 5mpbid 231 . . . 4 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
76adantr 481 . . 3 ((𝐴𝐵𝐶𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
8 f1f 6738 . . . . . . . 8 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
98frnd 6676 . . . . . . 7 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
109adantl 482 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
11 sdomnen 8921 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1211ad2antrr 724 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
13 vex 3449 . . . . . . . . . . 11 𝑓 ∈ V
14 dff1o5 6793 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
1514biimpri 227 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝑓:𝐴1-1-onto𝐵)
16 f1oen3g 8906 . . . . . . . . . . 11 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
1713, 15, 16sylancr 587 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝐴𝐵)
1817ex 413 . . . . . . . . 9 (𝑓:𝐴1-1𝐵 → (ran 𝑓 = 𝐵𝐴𝐵))
1918necon3bd 2957 . . . . . . . 8 (𝑓:𝐴1-1𝐵 → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2019adantl 482 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2112, 20mpd 15 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
22 pssdifn0 4325 . . . . . 6 ((ran 𝑓𝐵 ∧ ran 𝑓𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
2310, 21, 22syl2anc 584 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
24 n0 4306 . . . . 5 ((𝐵 ∖ ran 𝑓) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
2523, 24sylib 217 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
262brrelex1i 5688 . . . . . . . . 9 (𝐴𝐵𝐴 ∈ V)
2726ad2antrr 724 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ∈ V)
283ad2antrr 724 . . . . . . . . 9 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐵 ∈ V)
2928difexd 5286 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ∈ V)
30 eldifn 4087 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → ¬ 𝑥 ∈ ran 𝑓)
31 disjsn 4672 . . . . . . . . . . . . 13 ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝑓)
3230, 31sylibr 233 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → (ran 𝑓 ∩ {𝑥}) = ∅)
3332adantl 482 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → (ran 𝑓 ∩ {𝑥}) = ∅)
349adantr 481 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓𝐵)
35 reldisj 4411 . . . . . . . . . . . 12 (ran 𝑓𝐵 → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3634, 35syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3733, 36mpbid 231 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓 ⊆ (𝐵 ∖ {𝑥}))
38 f1ssr 6745 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
3937, 38syldan 591 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
4039adantl 482 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
41 f1dom2g 8909 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐵 ∖ {𝑥}) ∈ V ∧ 𝑓:𝐴1-1→(𝐵 ∖ {𝑥})) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
4227, 29, 40, 41syl3anc 1371 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
43 eldifi 4086 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝑥𝐵)
4443ad2antll 727 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑥𝐵)
45 simplr 767 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐶𝐵)
46 difsnen 8997 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑥𝐵𝐶𝐵) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
4728, 44, 45, 46syl3anc 1371 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
48 domentr 8953 . . . . . . 7 ((𝐴 ≼ (𝐵 ∖ {𝑥}) ∧ (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶})) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
4942, 47, 48syl2anc 584 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5049expr 457 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5150exlimdv 1936 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5225, 51mpd 15 . . 3 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
537, 52exlimddv 1938 . 2 ((𝐴𝐵𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
541adantr 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴𝐵)
55 difsn 4758 . . . . 5 𝐶𝐵 → (𝐵 ∖ {𝐶}) = 𝐵)
5655breq2d 5117 . . . 4 𝐶𝐵 → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5756adantl 482 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5854, 57mpbird 256 . 2 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5953, 58pm2.61dan 811 1 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  ran crn 5634  1-1wf1 6493  1-1-ontowf1o 6495  cen 8880  cdom 8881  csdm 8882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-en 8884  df-dom 8885  df-sdom 8886
This theorem is referenced by:  domunsn  9071  marypha1lem  9369
  Copyright terms: Public domain W3C validator