MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domdifsn Structured version   Visualization version   GIF version

Theorem domdifsn 9024
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domdifsn (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))

Proof of Theorem domdifsn
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8951 . . . . 5 (𝐴𝐵𝐴𝐵)
2 relsdom 8925 . . . . . . 7 Rel ≺
32brrelex2i 5695 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
4 brdomg 8930 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
61, 5mpbid 232 . . . 4 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
76adantr 480 . . 3 ((𝐴𝐵𝐶𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
8 f1f 6756 . . . . . . . 8 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
98frnd 6696 . . . . . . 7 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
109adantl 481 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
11 sdomnen 8952 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1211ad2antrr 726 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
13 vex 3451 . . . . . . . . . . 11 𝑓 ∈ V
14 dff1o5 6809 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
1514biimpri 228 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝑓:𝐴1-1-onto𝐵)
16 f1oen3g 8938 . . . . . . . . . . 11 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
1713, 15, 16sylancr 587 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵) → 𝐴𝐵)
1817ex 412 . . . . . . . . 9 (𝑓:𝐴1-1𝐵 → (ran 𝑓 = 𝐵𝐴𝐵))
1918necon3bd 2939 . . . . . . . 8 (𝑓:𝐴1-1𝐵 → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2019adantl 481 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (¬ 𝐴𝐵 → ran 𝑓𝐵))
2112, 20mpd 15 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
22 pssdifn0 4331 . . . . . 6 ((ran 𝑓𝐵 ∧ ran 𝑓𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
2310, 21, 22syl2anc 584 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝐵 ∖ ran 𝑓) ≠ ∅)
24 n0 4316 . . . . 5 ((𝐵 ∖ ran 𝑓) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
2523, 24sylib 218 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → ∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓))
262brrelex1i 5694 . . . . . . . . 9 (𝐴𝐵𝐴 ∈ V)
2726ad2antrr 726 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ∈ V)
283ad2antrr 726 . . . . . . . . 9 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐵 ∈ V)
2928difexd 5286 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ∈ V)
30 eldifn 4095 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → ¬ 𝑥 ∈ ran 𝑓)
31 disjsn 4675 . . . . . . . . . . . . 13 ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝑓)
3230, 31sylibr 234 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → (ran 𝑓 ∩ {𝑥}) = ∅)
3332adantl 481 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → (ran 𝑓 ∩ {𝑥}) = ∅)
349adantr 480 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓𝐵)
35 reldisj 4416 . . . . . . . . . . . 12 (ran 𝑓𝐵 → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3634, 35syl 17 . . . . . . . . . . 11 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ((ran 𝑓 ∩ {𝑥}) = ∅ ↔ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})))
3733, 36mpbid 232 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → ran 𝑓 ⊆ (𝐵 ∖ {𝑥}))
38 f1ssr 6762 . . . . . . . . . 10 ((𝑓:𝐴1-1𝐵 ∧ ran 𝑓 ⊆ (𝐵 ∖ {𝑥})) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
3937, 38syldan 591 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓)) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
4039adantl 481 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑓:𝐴1-1→(𝐵 ∖ {𝑥}))
41 f1dom2g 8941 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝐵 ∖ {𝑥}) ∈ V ∧ 𝑓:𝐴1-1→(𝐵 ∖ {𝑥})) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
4227, 29, 40, 41syl3anc 1373 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝑥}))
43 eldifi 4094 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝑥𝐵)
4443ad2antll 729 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝑥𝐵)
45 simplr 768 . . . . . . . 8 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐶𝐵)
46 difsnen 9023 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑥𝐵𝐶𝐵) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
4728, 44, 45, 46syl3anc 1373 . . . . . . 7 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶}))
48 domentr 8984 . . . . . . 7 ((𝐴 ≼ (𝐵 ∖ {𝑥}) ∧ (𝐵 ∖ {𝑥}) ≈ (𝐵 ∖ {𝐶})) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
4942, 47, 48syl2anc 584 . . . . . 6 (((𝐴𝐵𝐶𝐵) ∧ (𝑓:𝐴1-1𝐵𝑥 ∈ (𝐵 ∖ ran 𝑓))) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5049expr 456 . . . . 5 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5150exlimdv 1933 . . . 4 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → (∃𝑥 𝑥 ∈ (𝐵 ∖ ran 𝑓) → 𝐴 ≼ (𝐵 ∖ {𝐶})))
5225, 51mpd 15 . . 3 (((𝐴𝐵𝐶𝐵) ∧ 𝑓:𝐴1-1𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
537, 52exlimddv 1935 . 2 ((𝐴𝐵𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
541adantr 480 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴𝐵)
55 difsn 4762 . . . . 5 𝐶𝐵 → (𝐵 ∖ {𝐶}) = 𝐵)
5655breq2d 5119 . . . 4 𝐶𝐵 → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5756adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → (𝐴 ≼ (𝐵 ∖ {𝐶}) ↔ 𝐴𝐵))
5854, 57mpbird 257 . 2 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → 𝐴 ≼ (𝐵 ∖ {𝐶}))
5953, 58pm2.61dan 812 1 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ran crn 5639  1-1wf1 6508  1-1-ontowf1o 6510  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  domunsn  9091  marypha1lem  9384
  Copyright terms: Public domain W3C validator