Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 27670) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
usgrres | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgrres.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 27525 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
4 | upgrres.f | . . . . . . 7 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | 4 | ssrab3 4015 | . . . . . 6 ⊢ 𝐹 ⊆ dom 𝐸 |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ dom 𝐸) |
7 | f1ssres 6678 | . . . . 5 ⊢ ((𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
8 | 3, 6, 7 | syl2an2r 682 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
9 | usgrumgr 27549 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
10 | 1, 2, 4 | umgrreslem 27672 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
11 | 9, 10 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
12 | f1ssr 6677 | . . . 4 ⊢ (((𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | |
13 | 8, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
14 | ssdmres 5914 | . . . . 5 ⊢ (𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐹) = 𝐹) | |
15 | 5, 14 | mpbi 229 | . . . 4 ⊢ dom (𝐸 ↾ 𝐹) = 𝐹 |
16 | f1eq2 6666 | . . . 4 ⊢ (dom (𝐸 ↾ 𝐹) = 𝐹 → ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
18 | 13, 17 | sylibr 233 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
19 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
20 | opex 5379 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
21 | 19, 20 | eqeltri 2835 | . . 3 ⊢ 𝑆 ∈ V |
22 | 1, 2, 4, 19 | uhgrspan1lem2 27668 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
23 | 22 | eqcomi 2747 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
24 | 1, 2, 4, 19 | uhgrspan1lem3 27669 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
25 | 24 | eqcomi 2747 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
26 | 23, 25 | isusgrs 27526 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
27 | 21, 26 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
28 | 18, 27 | mpbird 256 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 〈cop 4567 dom cdm 5589 ran crn 5590 ↾ cres 5591 –1-1→wf1 6430 ‘cfv 6433 2c2 12028 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 UMGraphcumgr 27451 USGraphcusgr 27519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-vtx 27368 df-iedg 27369 df-uhgr 27428 df-upgr 27452 df-umgr 27453 df-usgr 27521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |