| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrres | Structured version Visualization version GIF version | ||
| Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 29281) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| usgrres | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | upgrres.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | usgrf 29133 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 4 | upgrres.f | . . . . . . 7 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 5 | 4 | ssrab3 4029 | . . . . . 6 ⊢ 𝐹 ⊆ dom 𝐸 |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ dom 𝐸) |
| 7 | f1ssres 6726 | . . . . 5 ⊢ ((𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
| 8 | 3, 6, 7 | syl2an2r 685 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 9 | usgrumgr 29159 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 10 | 1, 2, 4 | umgrreslem 29283 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 11 | 9, 10 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 12 | f1ssr 6725 | . . . 4 ⊢ (((𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | |
| 13 | 8, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 14 | ssdmres 5961 | . . . . 5 ⊢ (𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐹) = 𝐹) | |
| 15 | 5, 14 | mpbi 230 | . . . 4 ⊢ dom (𝐸 ↾ 𝐹) = 𝐹 |
| 16 | f1eq2 6715 | . . . 4 ⊢ (dom (𝐸 ↾ 𝐹) = 𝐹 → ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 18 | 13, 17 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 19 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
| 20 | opex 5402 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
| 21 | 19, 20 | eqeltri 2827 | . . 3 ⊢ 𝑆 ∈ V |
| 22 | 1, 2, 4, 19 | uhgrspan1lem2 29279 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 23 | 22 | eqcomi 2740 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 24 | 1, 2, 4, 19 | uhgrspan1lem3 29280 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
| 25 | 24 | eqcomi 2740 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
| 26 | 23, 25 | isusgrs 29134 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 27 | 21, 26 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 28 | 18, 27 | mpbird 257 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {csn 4573 〈cop 4579 dom cdm 5614 ran crn 5615 ↾ cres 5616 –1-1→wf1 6478 ‘cfv 6481 2c2 12180 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 UMGraphcumgr 29059 USGraphcusgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-vtx 28976 df-iedg 28977 df-uhgr 29036 df-upgr 29060 df-umgr 29061 df-usgr 29129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |