MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres Structured version   Visualization version   GIF version

Theorem usgrres 29253
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 29248) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
upgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
Assertion
Ref Expression
usgrres ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem usgrres
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrres.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 upgrres.e . . . . . 6 𝐸 = (iEdg‘𝐺)
31, 2usgrf 29100 . . . . 5 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 upgrres.f . . . . . . 7 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
54ssrab3 4033 . . . . . 6 𝐹 ⊆ dom 𝐸
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 ⊆ dom 𝐸)
7 f1ssres 6727 . . . . 5 ((𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ 𝐹 ⊆ dom 𝐸) → (𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
83, 6, 7syl2an2r 685 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
9 usgrumgr 29126 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
101, 2, 4umgrreslem 29250 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
119, 10sylan 580 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
12 f1ssr 6726 . . . 4 (((𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
138, 11, 12syl2anc 584 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
14 ssdmres 5964 . . . . 5 (𝐹 ⊆ dom 𝐸 ↔ dom (𝐸𝐹) = 𝐹)
155, 14mpbi 230 . . . 4 dom (𝐸𝐹) = 𝐹
16 f1eq2 6716 . . . 4 (dom (𝐸𝐹) = 𝐹 → ((𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
1715, 16ax-mp 5 . . 3 ((𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
1813, 17sylibr 234 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
19 upgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
20 opex 5407 . . . 4 ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩ ∈ V
2119, 20eqeltri 2824 . . 3 𝑆 ∈ V
221, 2, 4, 19uhgrspan1lem2 29246 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2322eqcomi 2738 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
241, 2, 4, 19uhgrspan1lem3 29247 . . . . 5 (iEdg‘𝑆) = (𝐸𝐹)
2524eqcomi 2738 . . . 4 (𝐸𝐹) = (iEdg‘𝑆)
2623, 25isusgrs 29101 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2721, 26mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2818, 27mpbird 257 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3029  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577  cop 4583  dom cdm 5619  ran crn 5620  cres 5621  1-1wf1 6479  cfv 6482  2c2 12183  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  UMGraphcumgr 29026  USGraphcusgr 29094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-vtx 28943  df-iedg 28944  df-uhgr 29003  df-upgr 29027  df-umgr 29028  df-usgr 29096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator