![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 29103) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
usgrres | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | upgrres.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 28955 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
4 | upgrres.f | . . . . . . 7 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | 4 | ssrab3 4076 | . . . . . 6 ⊢ 𝐹 ⊆ dom 𝐸 |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ dom 𝐸) |
7 | f1ssres 6795 | . . . . 5 ⊢ ((𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ 𝐹 ⊆ dom 𝐸) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) | |
8 | 3, 6, 7 | syl2an2r 684 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
9 | usgrumgr 28981 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
10 | 1, 2, 4 | umgrreslem 29105 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
11 | 9, 10 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
12 | f1ssr 6794 | . . . 4 ⊢ (((𝐸 ↾ 𝐹):𝐹–1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) | |
13 | 8, 11, 12 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
14 | ssdmres 6002 | . . . . 5 ⊢ (𝐹 ⊆ dom 𝐸 ↔ dom (𝐸 ↾ 𝐹) = 𝐹) | |
15 | 5, 14 | mpbi 229 | . . . 4 ⊢ dom (𝐸 ↾ 𝐹) = 𝐹 |
16 | f1eq2 6783 | . . . 4 ⊢ (dom (𝐸 ↾ 𝐹) = 𝐹 → ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸 ↾ 𝐹):𝐹–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
18 | 13, 17 | sylibr 233 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
19 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
20 | opex 5460 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
21 | 19, 20 | eqeltri 2824 | . . 3 ⊢ 𝑆 ∈ V |
22 | 1, 2, 4, 19 | uhgrspan1lem2 29101 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
23 | 22 | eqcomi 2736 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
24 | 1, 2, 4, 19 | uhgrspan1lem3 29102 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
25 | 24 | eqcomi 2736 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
26 | 23, 25 | isusgrs 28956 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
27 | 21, 26 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
28 | 18, 27 | mpbird 257 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∉ wnel 3041 {crab 3427 Vcvv 3469 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4598 {csn 4624 〈cop 4630 dom cdm 5672 ran crn 5673 ↾ cres 5674 –1-1→wf1 6539 ‘cfv 6542 2c2 12289 ♯chash 14313 Vtxcvtx 28796 iEdgciedg 28797 UMGraphcumgr 28881 USGraphcusgr 28949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 df-vtx 28798 df-iedg 28799 df-uhgr 28858 df-upgr 28882 df-umgr 28883 df-usgr 28951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |