MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres Structured version   Visualization version   GIF version

Theorem usgrres 27618
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 27613) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
upgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
Assertion
Ref Expression
usgrres ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem usgrres
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrres.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 upgrres.e . . . . . 6 𝐸 = (iEdg‘𝐺)
31, 2usgrf 27468 . . . . 5 (𝐺 ∈ USGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
4 upgrres.f . . . . . . 7 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
54ssrab3 4016 . . . . . 6 𝐹 ⊆ dom 𝐸
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 ⊆ dom 𝐸)
7 f1ssres 6667 . . . . 5 ((𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ 𝐹 ⊆ dom 𝐸) → (𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
83, 6, 7syl2an2r 681 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
9 usgrumgr 27492 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
101, 2, 4umgrreslem 27615 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
119, 10sylan 579 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
12 f1ssr 6666 . . . 4 (((𝐸𝐹):𝐹1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) → (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
138, 11, 12syl2anc 583 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
14 ssdmres 5908 . . . . 5 (𝐹 ⊆ dom 𝐸 ↔ dom (𝐸𝐹) = 𝐹)
155, 14mpbi 229 . . . 4 dom (𝐸𝐹) = 𝐹
16 f1eq2 6655 . . . 4 (dom (𝐸𝐹) = 𝐹 → ((𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
1715, 16ax-mp 5 . . 3 ((𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ (𝐸𝐹):𝐹1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
1813, 17sylibr 233 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
19 upgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
20 opex 5378 . . . 4 ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩ ∈ V
2119, 20eqeltri 2833 . . 3 𝑆 ∈ V
221, 2, 4, 19uhgrspan1lem2 27611 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2322eqcomi 2746 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
241, 2, 4, 19uhgrspan1lem3 27612 . . . . 5 (iEdg‘𝑆) = (𝐸𝐹)
2524eqcomi 2746 . . . 4 (𝐸𝐹) = (iEdg‘𝑆)
2623, 25isusgrs 27469 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2721, 26mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ (𝐸𝐹):dom (𝐸𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2818, 27mpbird 256 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2107  wnel 3047  {crab 3066  Vcvv 3427  cdif 3885  wss 3888  c0 4258  𝒫 cpw 4535  {csn 4563  cop 4569  dom cdm 5585  ran crn 5586  cres 5587  1-1wf1 6420  cfv 6423  2c2 11974  chash 13988  Vtxcvtx 27309  iEdgciedg 27310  UMGraphcumgr 27394  USGraphcusgr 27462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-om 7693  df-1st 7809  df-2nd 7810  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-1o 8272  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-fin 8700  df-card 9644  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-nn 11920  df-2 11982  df-n0 12180  df-z 12266  df-uz 12528  df-fz 13185  df-hash 13989  df-vtx 27311  df-iedg 27312  df-uhgr 27371  df-upgr 27395  df-umgr 27396  df-usgr 27464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator