MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgri Structured version   Visualization version   GIF version

Theorem ausgrusgri 29147
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.)
Hypotheses
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
ausgrusgri.1 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
Assertion
Ref Expression
ausgrusgri ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Distinct variable groups:   𝑣,𝑒,𝑥,𝐻   𝑓,𝐻   𝑥,𝑊
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒,𝑓)   𝑂(𝑥,𝑣,𝑒,𝑓)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem ausgrusgri
StepHypRef Expression
1 fvex 6889 . . . . 5 (Vtx‘𝐻) ∈ V
2 fvex 6889 . . . . 5 (Edg‘𝐻) ∈ V
3 ausgr.1 . . . . . 6 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
43isausgr 29143 . . . . 5 (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
51, 2, 4mp2an 692 . . . 4 ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
6 edgval 29028 . . . . . . 7 (Edg‘𝐻) = ran (iEdg‘𝐻)
76a1i 11 . . . . . 6 (𝐻𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻))
87sseq1d 3990 . . . . 5 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
9 ausgrusgri.1 . . . . . . . . . 10 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
109eleq2i 2826 . . . . . . . . 9 ((iEdg‘𝐻) ∈ 𝑂 ↔ (iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓})
11 fvex 6889 . . . . . . . . . 10 (iEdg‘𝐻) ∈ V
12 id 22 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → 𝑓 = (iEdg‘𝐻))
13 dmeq 5883 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → dom 𝑓 = dom (iEdg‘𝐻))
14 rneq 5916 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → ran 𝑓 = ran (iEdg‘𝐻))
1512, 13, 14f1eq123d 6810 . . . . . . . . . 10 (𝑓 = (iEdg‘𝐻) → (𝑓:dom 𝑓1-1→ran 𝑓 ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)))
1611, 15elab 3658 . . . . . . . . 9 ((iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓} ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
1710, 16sylbb 219 . . . . . . . 8 ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
18173ad2ant3 1135 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
19 simp2 1137 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
20 f1ssr 6780 . . . . . . 7 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
2118, 19, 20syl2anc 584 . . . . . 6 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
22213exp 1119 . . . . 5 (𝐻𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
238, 22sylbid 240 . . . 4 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
245, 23biimtrid 242 . . 3 (𝐻𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
25243imp 1110 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
26 eqid 2735 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
27 eqid 2735 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
2826, 27isusgrs 29135 . . 3 (𝐻𝑊 → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
29283ad2ant1 1133 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
3025, 29mpbird 257 1 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575   class class class wbr 5119  {copab 5181  dom cdm 5654  ran crn 5655  1-1wf1 6528  cfv 6531  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  USGraphcusgr 29128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-usgr 29130
This theorem is referenced by:  usgrausgrb  29148
  Copyright terms: Public domain W3C validator