MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrumgruspgr Structured version   Visualization version   GIF version

Theorem usgrumgruspgr 29166
Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
usgrumgruspgr (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))

Proof of Theorem usgrumgruspgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgrumgr 29165 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
2 usgruspgr 29164 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2jca 511 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))
4 eqid 2736 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2736 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5uspgrf 29138 . . . 4 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
7 umgredgss 29117 . . . . 5 (𝐺 ∈ UMGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
8 edgval 29033 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
9 prprrab 14496 . . . . . 6 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}
109eqcomi 2745 . . . . 5 {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}
117, 8, 103sstr3g 4016 . . . 4 (𝐺 ∈ UMGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
12 f1ssr 6785 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
136, 11, 12syl2anr 597 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
144, 5isusgr 29137 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
1514adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
1613, 15mpbird 257 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → 𝐺 ∈ USGraph)
173, 16impbii 209 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  dom cdm 5659  ran crn 5660  1-1wf1 6533  cfv 6536  cle 11275  2c2 12300  chash 14353  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UMGraphcumgr 29065  USPGraphcuspgr 29132  USGraphcusgr 29133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-edg 29032  df-umgr 29067  df-uspgr 29134  df-usgr 29135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator