MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrumgruspgr Structured version   Visualization version   GIF version

Theorem usgrumgruspgr 29034
Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
usgrumgruspgr (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))

Proof of Theorem usgrumgruspgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgrumgr 29033 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
2 usgruspgr 29032 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2jca 510 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))
4 eqid 2725 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2725 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5uspgrf 29006 . . . 4 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
7 umgredgss 28985 . . . . 5 (𝐺 ∈ UMGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2})
8 edgval 28901 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
9 prprrab 14461 . . . . . 6 {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2}
109eqcomi 2734 . . . . 5 {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}
117, 8, 103sstr3g 4018 . . . 4 (𝐺 ∈ UMGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
12 f1ssr 6793 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
136, 11, 12syl2anr 595 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})
144, 5isusgr 29005 . . . 4 (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
1514adantr 479 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2}))
1613, 15mpbird 256 . 2 ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → 𝐺 ∈ USGraph)
173, 16impbii 208 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3419  cdif 3938  wss 3941  c0 4319  𝒫 cpw 4599  {csn 4625   class class class wbr 5144  dom cdm 5673  ran crn 5674  1-1wf1 6540  cfv 6543  cle 11274  2c2 12292  chash 14316  Vtxcvtx 28848  iEdgciedg 28849  Edgcedg 28899  UMGraphcumgr 28933  USPGraphcuspgr 29000  USGraphcusgr 29001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317  df-edg 28900  df-umgr 28935  df-uspgr 29002  df-usgr 29003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator