![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version |
Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
Ref | Expression |
---|---|
lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
lindflbs.y | ⊢ 0 = (0g‘𝑆) |
lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
Ref | Expression |
---|---|
lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs4 21875 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
6 | ssv 4033 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
7 | f1ssr 6823 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
8 | 5, 6, 7 | sylancl 585 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
9 | f1dm 6821 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
10 | f1eq2 6813 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
12 | 8, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
16 | 15 | islindf3 21869 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
17 | 13, 14, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
18 | 12, 17 | mpbirand 706 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
19 | 18 | anbi1d 630 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
20 | 4, 19 | bitr4id 290 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ran crn 5701 –1-1→wf1 6570 ‘cfv 6573 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 NzRingcnzr 20538 LModclmod 20880 LSpanclspn 20992 LBasisclbs 21096 LIndF clindf 21847 LIndSclinds 21848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-mgp 20162 df-ur 20209 df-ring 20262 df-nzr 20539 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lbs 21097 df-lindf 21849 df-linds 21850 |
This theorem is referenced by: islbs5 33373 fedgmul 33644 |
Copyright terms: Public domain | W3C validator |