| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version | ||
| Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
| Ref | Expression |
|---|---|
| lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
| lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
| lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
| lindflbs.y | ⊢ 0 = (0g‘𝑆) |
| lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
| Ref | Expression |
|---|---|
| lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
| 3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21769 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
| 5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
| 6 | ssv 3954 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
| 7 | f1ssr 6725 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
| 9 | f1dm 6723 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
| 10 | f1eq2 6715 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
| 11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
| 12 | 8, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
| 13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 16 | 15 | islindf3 21763 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 17 | 13, 14, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 18 | 12, 17 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
| 19 | 18 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| 20 | 4, 19 | bitr4id 290 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 dom cdm 5614 ran crn 5615 –1-1→wf1 6478 ‘cfv 6481 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 NzRingcnzr 20427 LModclmod 20793 LSpanclspn 20904 LBasisclbs 21008 LIndF clindf 21741 LIndSclinds 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-mgp 20059 df-ur 20100 df-ring 20153 df-nzr 20428 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lbs 21009 df-lindf 21743 df-linds 21744 |
| This theorem is referenced by: islbs5 33345 fedgmul 33644 |
| Copyright terms: Public domain | W3C validator |