| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version | ||
| Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
| Ref | Expression |
|---|---|
| lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
| lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
| lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
| lindflbs.y | ⊢ 0 = (0g‘𝑆) |
| lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
| Ref | Expression |
|---|---|
| lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
| 3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21717 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
| 5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
| 6 | ssv 3968 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
| 7 | f1ssr 6744 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
| 9 | f1dm 6742 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
| 10 | f1eq2 6734 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
| 11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
| 12 | 8, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
| 13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 16 | 15 | islindf3 21711 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 17 | 13, 14, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 18 | 12, 17 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
| 19 | 18 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| 20 | 4, 19 | bitr4id 290 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 ran crn 5632 –1-1→wf1 6496 ‘cfv 6499 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 NzRingcnzr 20397 LModclmod 20742 LSpanclspn 20853 LBasisclbs 20957 LIndF clindf 21689 LIndSclinds 21690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-mgp 20026 df-ur 20067 df-ring 20120 df-nzr 20398 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lbs 20958 df-lindf 21691 df-linds 21692 |
| This theorem is referenced by: islbs5 33324 fedgmul 33600 |
| Copyright terms: Public domain | W3C validator |