| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version | ||
| Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
| Ref | Expression |
|---|---|
| lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
| lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
| lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
| lindflbs.y | ⊢ 0 = (0g‘𝑆) |
| lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
| Ref | Expression |
|---|---|
| lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | eqid 2736 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
| 3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21797 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
| 5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
| 6 | ssv 3988 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
| 7 | f1ssr 6785 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
| 9 | f1dm 6783 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
| 10 | f1eq2 6775 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
| 11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
| 12 | 8, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
| 13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 16 | 15 | islindf3 21791 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 17 | 13, 14, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
| 18 | 12, 17 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
| 19 | 18 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| 20 | 4, 19 | bitr4id 290 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ran crn 5660 –1-1→wf1 6533 ‘cfv 6536 Basecbs 17233 Scalarcsca 17279 ·𝑠 cvsca 17280 0gc0g 17458 NzRingcnzr 20477 LModclmod 20822 LSpanclspn 20933 LBasisclbs 21037 LIndF clindf 21769 LIndSclinds 21770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-mgp 20106 df-ur 20147 df-ring 20200 df-nzr 20478 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lbs 21038 df-lindf 21771 df-linds 21772 |
| This theorem is referenced by: islbs5 33400 fedgmul 33676 |
| Copyright terms: Public domain | W3C validator |