![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version |
Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
Ref | Expression |
---|---|
lindflbs.b | β’ π΅ = (Baseβπ) |
lindflbs.k | β’ πΎ = (BaseβπΉ) |
lindflbs.r | β’ π = (Scalarβπ) |
lindflbs.t | β’ Β· = ( Β·π βπ) |
lindflbs.z | β’ π = (0gβπ) |
lindflbs.y | β’ 0 = (0gβπ) |
lindflbs.n | β’ π = (LSpanβπ) |
lindflbs.1 | β’ (π β π β LMod) |
lindflbs.2 | β’ (π β π β NzRing) |
lindflbs.3 | β’ (π β πΌ β π) |
lindflbs.4 | β’ (π β πΉ:πΌβ1-1βπ΅) |
Ref | Expression |
---|---|
lindflbs | β’ (π β (ran πΉ β (LBasisβπ) β (πΉ LIndF π β§ (πβran πΉ) = π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindflbs.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | eqid 2730 | . . 3 β’ (LBasisβπ) = (LBasisβπ) | |
3 | lindflbs.n | . . 3 β’ π = (LSpanβπ) | |
4 | 1, 2, 3 | islbs4 21606 | . 2 β’ (ran πΉ β (LBasisβπ) β (ran πΉ β (LIndSβπ) β§ (πβran πΉ) = π΅)) |
5 | lindflbs.4 | . . . . . 6 β’ (π β πΉ:πΌβ1-1βπ΅) | |
6 | ssv 4005 | . . . . . 6 β’ ran πΉ β V | |
7 | f1ssr 6793 | . . . . . 6 β’ ((πΉ:πΌβ1-1βπ΅ β§ ran πΉ β V) β πΉ:πΌβ1-1βV) | |
8 | 5, 6, 7 | sylancl 584 | . . . . 5 β’ (π β πΉ:πΌβ1-1βV) |
9 | f1dm 6790 | . . . . . 6 β’ (πΉ:πΌβ1-1βπ΅ β dom πΉ = πΌ) | |
10 | f1eq2 6782 | . . . . . 6 β’ (dom πΉ = πΌ β (πΉ:dom πΉβ1-1βV β πΉ:πΌβ1-1βV)) | |
11 | 5, 9, 10 | 3syl 18 | . . . . 5 β’ (π β (πΉ:dom πΉβ1-1βV β πΉ:πΌβ1-1βV)) |
12 | 8, 11 | mpbird 256 | . . . 4 β’ (π β πΉ:dom πΉβ1-1βV) |
13 | lindflbs.1 | . . . . 5 β’ (π β π β LMod) | |
14 | lindflbs.2 | . . . . 5 β’ (π β π β NzRing) | |
15 | lindflbs.r | . . . . . 6 β’ π = (Scalarβπ) | |
16 | 15 | islindf3 21600 | . . . . 5 β’ ((π β LMod β§ π β NzRing) β (πΉ LIndF π β (πΉ:dom πΉβ1-1βV β§ ran πΉ β (LIndSβπ)))) |
17 | 13, 14, 16 | syl2anc 582 | . . . 4 β’ (π β (πΉ LIndF π β (πΉ:dom πΉβ1-1βV β§ ran πΉ β (LIndSβπ)))) |
18 | 12, 17 | mpbirand 703 | . . 3 β’ (π β (πΉ LIndF π β ran πΉ β (LIndSβπ))) |
19 | 18 | anbi1d 628 | . 2 β’ (π β ((πΉ LIndF π β§ (πβran πΉ) = π΅) β (ran πΉ β (LIndSβπ) β§ (πβran πΉ) = π΅))) |
20 | 4, 19 | bitr4id 289 | 1 β’ (π β (ran πΉ β (LBasisβπ) β (πΉ LIndF π β§ (πβran πΉ) = π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3947 class class class wbr 5147 dom cdm 5675 ran crn 5676 β1-1βwf1 6539 βcfv 6542 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 NzRingcnzr 20403 LModclmod 20614 LSpanclspn 20726 LBasisclbs 20829 LIndF clindf 21578 LIndSclinds 21579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-mgp 20029 df-ur 20076 df-ring 20129 df-nzr 20404 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lbs 20830 df-lindf 21580 df-linds 21581 |
This theorem is referenced by: islbs5 32770 fedgmul 33004 |
Copyright terms: Public domain | W3C validator |