Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version |
Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
Ref | Expression |
---|---|
lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
lindflbs.y | ⊢ 0 = (0g‘𝑆) |
lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
Ref | Expression |
---|---|
lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | eqid 2739 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs4 21020 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
6 | ssv 3949 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
7 | f1ssr 6673 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
8 | 5, 6, 7 | sylancl 585 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
9 | f1dm 6670 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
10 | f1eq2 6662 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
12 | 8, 11 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
16 | 15 | islindf3 21014 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
17 | 13, 14, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
18 | 12, 17 | mpbirand 703 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
19 | 18 | anbi1d 629 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
20 | 4, 19 | bitr4id 289 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 class class class wbr 5078 dom cdm 5588 ran crn 5589 –1-1→wf1 6427 ‘cfv 6430 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 0gc0g 17131 LModclmod 20104 LSpanclspn 20214 LBasisclbs 20317 NzRingcnzr 20509 LIndF clindf 20992 LIndSclinds 20993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-mgp 19702 df-ur 19719 df-ring 19766 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lbs 20318 df-nzr 20510 df-lindf 20994 df-linds 20995 |
This theorem is referenced by: fedgmul 31691 |
Copyright terms: Public domain | W3C validator |