Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindflbs | Structured version Visualization version GIF version |
Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.) |
Ref | Expression |
---|---|
lindflbs.b | ⊢ 𝐵 = (Base‘𝑊) |
lindflbs.k | ⊢ 𝐾 = (Base‘𝐹) |
lindflbs.r | ⊢ 𝑆 = (Scalar‘𝑊) |
lindflbs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lindflbs.z | ⊢ 𝑂 = (0g‘𝑊) |
lindflbs.y | ⊢ 0 = (0g‘𝑆) |
lindflbs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lindflbs.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lindflbs.2 | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
lindflbs.3 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
lindflbs.4 | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
Ref | Expression |
---|---|
lindflbs | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindflbs.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (LBasis‘𝑊) = (LBasis‘𝑊) | |
3 | lindflbs.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs4 20650 | . 2 ⊢ (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵)) |
5 | lindflbs.4 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
6 | ssv 3901 | . . . . . 6 ⊢ ran 𝐹 ⊆ V | |
7 | f1ssr 6581 | . . . . . 6 ⊢ ((𝐹:𝐼–1-1→𝐵 ∧ ran 𝐹 ⊆ V) → 𝐹:𝐼–1-1→V) | |
8 | 5, 6, 7 | sylancl 589 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼–1-1→V) |
9 | f1dm 6578 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → dom 𝐹 = 𝐼) | |
10 | f1eq2 6570 | . . . . . 6 ⊢ (dom 𝐹 = 𝐼 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) | |
11 | 5, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹–1-1→V ↔ 𝐹:𝐼–1-1→V)) |
12 | 8, 11 | mpbird 260 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→V) |
13 | lindflbs.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lindflbs.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
15 | lindflbs.r | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑊) | |
16 | 15 | islindf3 20644 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
17 | 13, 14, 16 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) |
18 | 12, 17 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ran 𝐹 ∈ (LIndS‘𝑊))) |
19 | 18 | anbi1d 633 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (ran 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
20 | 4, 19 | bitr4id 293 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ⊆ wss 3843 class class class wbr 5030 dom cdm 5525 ran crn 5526 –1-1→wf1 6336 ‘cfv 6339 Basecbs 16588 Scalarcsca 16673 ·𝑠 cvsca 16674 0gc0g 16818 LModclmod 19755 LSpanclspn 19864 LBasisclbs 19967 NzRingcnzr 20151 LIndF clindf 20622 LIndSclinds 20623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-plusg 16683 df-0g 16820 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-grp 18224 df-mgp 19361 df-ur 19373 df-ring 19420 df-lmod 19757 df-lss 19825 df-lsp 19865 df-lbs 19968 df-nzr 20152 df-lindf 20624 df-linds 20625 |
This theorem is referenced by: fedgmul 31286 |
Copyright terms: Public domain | W3C validator |