![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1resf1 | Structured version Visualization version GIF version |
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
f1resf1 | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 6796 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
2 | 1 | 3adant3 1133 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
3 | frn 6725 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) | |
4 | 3 | 3ad2ant3 1136 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) |
5 | f1ssr 6795 | . 2 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) | |
6 | 2, 4, 5 | syl2anc 585 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ⊆ wss 3949 ran crn 5678 ↾ cres 5679 ⟶wf 6540 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 |
This theorem is referenced by: inlresf1 9910 inrresf1 9912 pfxf1 32108 |
Copyright terms: Public domain | W3C validator |