Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1resf1 | Structured version Visualization version GIF version |
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
f1resf1 | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 6678 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
3 | frn 6607 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) | |
4 | 3 | 3ad2ant3 1134 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) |
5 | f1ssr 6677 | . 2 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) | |
6 | 2, 4, 5 | syl2anc 584 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ⊆ wss 3887 ran crn 5590 ↾ cres 5591 ⟶wf 6429 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 |
This theorem is referenced by: inlresf1 9673 inrresf1 9675 pfxf1 31216 |
Copyright terms: Public domain | W3C validator |