MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1resf1 Structured version   Visualization version   GIF version

Theorem f1resf1 6787
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 6786 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
213adant3 1132 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐵)
3 frn 6718 . . 3 ((𝐹𝐶):𝐶𝐷 → ran (𝐹𝐶) ⊆ 𝐷)
433ad2ant3 1135 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → ran (𝐹𝐶) ⊆ 𝐷)
5 f1ssr 6785 . 2 (((𝐹𝐶):𝐶1-1𝐵 ∧ ran (𝐹𝐶) ⊆ 𝐷) → (𝐹𝐶):𝐶1-1𝐷)
62, 4, 5syl2anc 584 1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wss 3931  ran crn 5660  cres 5661  wf 6532  1-1wf1 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541
This theorem is referenced by:  inlresf1  9934  inrresf1  9936  pfxf1  32922  aks6d1c2  42148  3f1oss1  47084
  Copyright terms: Public domain W3C validator