MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1resf1 Structured version   Visualization version   GIF version

Theorem f1resf1 6361
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 6360 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
213adant3 1123 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐵)
3 frn 6299 . . 3 ((𝐹𝐶):𝐶𝐷 → ran (𝐹𝐶) ⊆ 𝐷)
433ad2ant3 1126 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → ran (𝐹𝐶) ⊆ 𝐷)
5 f1ssr 6359 . 2 (((𝐹𝐶):𝐶1-1𝐵 ∧ ran (𝐹𝐶) ⊆ 𝐷) → (𝐹𝐶):𝐶1-1𝐷)
62, 4, 5syl2anc 579 1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071  wss 3792  ran crn 5358  cres 5359  wf 6133  1-1wf1 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142
This theorem is referenced by:  inlresf1  9076  inrresf1  9078
  Copyright terms: Public domain W3C validator