| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1resf1 | Structured version Visualization version GIF version | ||
| Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| f1resf1 | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres 6726 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| 3 | frn 6658 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) | |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) |
| 5 | f1ssr 6725 | . 2 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) | |
| 6 | 2, 4, 5 | syl2anc 584 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ⊆ wss 3902 ran crn 5617 ↾ cres 5618 ⟶wf 6477 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 |
| This theorem is referenced by: inlresf1 9805 inrresf1 9807 pfxf1 32918 aks6d1c2 42162 3f1oss1 47105 |
| Copyright terms: Public domain | W3C validator |