| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1resf1 | Structured version Visualization version GIF version | ||
| Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| f1resf1 | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres 6763 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| 3 | frn 6695 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) | |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → ran (𝐹 ↾ 𝐶) ⊆ 𝐷) |
| 5 | f1ssr 6762 | . 2 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) | |
| 6 | 2, 4, 5 | syl2anc 584 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 ⟶wf 6507 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 |
| This theorem is referenced by: inlresf1 9868 inrresf1 9870 pfxf1 32863 aks6d1c2 42118 3f1oss1 47076 |
| Copyright terms: Public domain | W3C validator |