MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1resf1 Structured version   Visualization version   GIF version

Theorem f1resf1 6825
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 6824 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
213adant3 1132 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐵)
3 frn 6754 . . 3 ((𝐹𝐶):𝐶𝐷 → ran (𝐹𝐶) ⊆ 𝐷)
433ad2ant3 1135 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → ran (𝐹𝐶) ⊆ 𝐷)
5 f1ssr 6823 . 2 (((𝐹𝐶):𝐶1-1𝐵 ∧ ran (𝐹𝐶) ⊆ 𝐷) → (𝐹𝐶):𝐶1-1𝐷)
62, 4, 5syl2anc 583 1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wss 3976  ran crn 5701  cres 5702  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578
This theorem is referenced by:  inlresf1  9984  inrresf1  9986  pfxf1  32908  aks6d1c2  42087  3f1oss1  46990
  Copyright terms: Public domain W3C validator