| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version | ||
| Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fnfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6618 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 |
| This theorem is referenced by: imadrhmcl 20706 noseqrdg0 28201 noseqrdgsuc 28202 ply1degltdimlem 33618 bnj945 34763 bnj545 34885 bnj548 34887 bnj553 34888 bnj570 34895 bnj929 34926 bnj966 34934 bnj1442 35039 bnj1450 35040 bnj1501 35057 aks6d1c2lem4 42115 aks6d1c2 42118 aks6d1c6lem5 42165 eqresfnbd 42220 idemb 49148 |
| Copyright terms: Public domain | W3C validator |