| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version | ||
| Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fnfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6643 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6530 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6539 |
| This theorem is referenced by: imadrhmcl 20762 noseqrdg0 28258 noseqrdgsuc 28259 ply1degltdimlem 33667 bnj945 34809 bnj545 34931 bnj548 34933 bnj553 34934 bnj570 34941 bnj929 34972 bnj966 34980 bnj1442 35085 bnj1450 35086 bnj1501 35103 aks6d1c2lem4 42145 aks6d1c2 42148 aks6d1c6lem5 42195 eqresfnbd 42250 |
| Copyright terms: Public domain | W3C validator |