![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version |
Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fnfund | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnfun 6640 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6528 Fn wfn 6529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6537 |
This theorem is referenced by: imadrhmcl 20644 noseqrdg0 28121 noseqrdgsuc 28122 ply1degltdimlem 33215 bnj945 34303 bnj545 34425 bnj548 34427 bnj553 34428 bnj570 34435 bnj929 34466 bnj966 34474 bnj1442 34579 bnj1450 34580 bnj1501 34597 eqresfnbd 41589 |
Copyright terms: Public domain | W3C validator |