MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfund Structured version   Visualization version   GIF version

Theorem fnfund 6587
Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
fnfund.1 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fnfund (𝜑 → Fun 𝐹)

Proof of Theorem fnfund
StepHypRef Expression
1 fnfund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfun 6586 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6480   Fn wfn 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-fn 6489
This theorem is referenced by:  imadrhmcl  20701  noseqrdg0  28225  noseqrdgsuc  28226  ply1degltdimlem  33608  bnj945  34759  bnj545  34881  bnj548  34883  bnj553  34884  bnj570  34891  bnj929  34922  bnj966  34930  bnj1442  35035  bnj1450  35036  bnj1501  35053  aks6d1c2lem4  42120  aks6d1c2  42123  aks6d1c6lem5  42170  eqresfnbd  42225  idemb  49164
  Copyright terms: Public domain W3C validator