| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version | ||
| Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fnfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 |
| This theorem is referenced by: imadrhmcl 20713 noseqrdg0 28208 noseqrdgsuc 28209 ply1degltdimlem 33625 bnj945 34770 bnj545 34892 bnj548 34894 bnj553 34895 bnj570 34902 bnj929 34933 bnj966 34941 bnj1442 35046 bnj1450 35047 bnj1501 35064 aks6d1c2lem4 42122 aks6d1c2 42125 aks6d1c6lem5 42172 eqresfnbd 42227 idemb 49152 |
| Copyright terms: Public domain | W3C validator |