| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version | ||
| Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fnfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6576 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6470 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6479 |
| This theorem is referenced by: imadrhmcl 20707 noseqrdg0 28232 noseqrdgsuc 28233 ply1degltdimlem 33627 bnj945 34777 bnj545 34899 bnj548 34901 bnj553 34902 bnj570 34909 bnj929 34940 bnj966 34948 bnj1442 35053 bnj1450 35054 bnj1501 35071 aks6d1c2lem4 42160 aks6d1c2 42163 aks6d1c6lem5 42210 eqresfnbd 42265 idemb 49191 |
| Copyright terms: Public domain | W3C validator |