| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfund | Structured version Visualization version GIF version | ||
| Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| fnfund.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fnfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfund.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 6586 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 |
| This theorem is referenced by: imadrhmcl 20701 noseqrdg0 28225 noseqrdgsuc 28226 ply1degltdimlem 33608 bnj945 34759 bnj545 34881 bnj548 34883 bnj553 34884 bnj570 34891 bnj929 34922 bnj966 34930 bnj1442 35035 bnj1450 35036 bnj1501 35053 aks6d1c2lem4 42120 aks6d1c2 42123 aks6d1c6lem5 42170 eqresfnbd 42225 idemb 49164 |
| Copyright terms: Public domain | W3C validator |