MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfund Structured version   Visualization version   GIF version

Theorem fnfund 6641
Description: A function with domain is a function, deduction form. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
fnfund.1 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
fnfund (𝜑 → Fun 𝐹)

Proof of Theorem fnfund
StepHypRef Expression
1 fnfund.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnfun 6640 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 17 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Fun wfun 6528   Fn wfn 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-fn 6537
This theorem is referenced by:  imadrhmcl  20644  noseqrdg0  28121  noseqrdgsuc  28122  ply1degltdimlem  33215  bnj945  34303  bnj545  34425  bnj548  34427  bnj553  34428  bnj570  34435  bnj929  34466  bnj966  34474  bnj1442  34579  bnj1450  34580  bnj1501  34597  eqresfnbd  41589
  Copyright terms: Public domain W3C validator