MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqrdgsuc Structured version   Visualization version   GIF version

Theorem noseqrdgsuc 28254
Description: Successor value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 19-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
noseqrdg.3 (𝜑𝑆 = ran 𝑅)
Assertion
Ref Expression
noseqrdgsuc ((𝜑𝐵𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem noseqrdgsuc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2noseq.1 . . . . . . 7 (𝜑𝐶 No )
2 om2noseq.2 . . . . . . 7 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . . . 7 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
4 noseqrdg.1 . . . . . . 7 (𝜑𝐴𝑉)
5 noseqrdg.2 . . . . . . 7 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
6 noseqrdg.3 . . . . . . 7 (𝜑𝑆 = ran 𝑅)
71, 2, 3, 4, 5, 6noseqrdgfn 28252 . . . . . 6 (𝜑𝑆 Fn 𝑍)
87adantr 480 . . . . 5 ((𝜑𝐵𝑍) → 𝑆 Fn 𝑍)
98fnfund 6639 . . . 4 ((𝜑𝐵𝑍) → Fun 𝑆)
103adantr 480 . . . . . . 7 ((𝜑𝐵𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
111adantr 480 . . . . . . 7 ((𝜑𝐵𝑍) → 𝐶 No )
12 simpr 484 . . . . . . 7 ((𝜑𝐵𝑍) → 𝐵𝑍)
1310, 11, 12noseqp1 28237 . . . . . 6 ((𝜑𝐵𝑍) → (𝐵 +s 1s ) ∈ 𝑍)
141, 2, 3, 4, 5noseqrdglem 28251 . . . . . 6 ((𝜑 ∧ (𝐵 +s 1s ) ∈ 𝑍) → ⟨(𝐵 +s 1s ), (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s ))))⟩ ∈ ran 𝑅)
1513, 14syldan 591 . . . . 5 ((𝜑𝐵𝑍) → ⟨(𝐵 +s 1s ), (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s ))))⟩ ∈ ran 𝑅)
166adantr 480 . . . . 5 ((𝜑𝐵𝑍) → 𝑆 = ran 𝑅)
1715, 16eleqtrrd 2837 . . . 4 ((𝜑𝐵𝑍) → ⟨(𝐵 +s 1s ), (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s ))))⟩ ∈ 𝑆)
18 funopfv 6928 . . . 4 (Fun 𝑆 → (⟨(𝐵 +s 1s ), (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s ))))⟩ ∈ 𝑆 → (𝑆‘(𝐵 +s 1s )) = (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s ))))))
199, 17, 18sylc 65 . . 3 ((𝜑𝐵𝑍) → (𝑆‘(𝐵 +s 1s )) = (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s )))))
201, 2, 3om2noseqf1o 28247 . . . . . . . 8 (𝜑𝐺:ω–1-1-onto𝑍)
2120adantr 480 . . . . . . 7 ((𝜑𝐵𝑍) → 𝐺:ω–1-1-onto𝑍)
22 f1ocnvdm 7278 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍𝐵𝑍) → (𝐺𝐵) ∈ ω)
2320, 22sylan 580 . . . . . . . 8 ((𝜑𝐵𝑍) → (𝐺𝐵) ∈ ω)
24 peano2 7886 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
2523, 24syl 17 . . . . . . 7 ((𝜑𝐵𝑍) → suc (𝐺𝐵) ∈ ω)
2621, 25jca 511 . . . . . 6 ((𝜑𝐵𝑍) → (𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝐵) ∈ ω))
272adantr 480 . . . . . . . 8 ((𝜑𝐵𝑍) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
2811, 27, 23om2noseqsuc 28243 . . . . . . 7 ((𝜑𝐵𝑍) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) +s 1s ))
29 f1ocnvfv2 7270 . . . . . . . . 9 ((𝐺:ω–1-1-onto𝑍𝐵𝑍) → (𝐺‘(𝐺𝐵)) = 𝐵)
3020, 29sylan 580 . . . . . . . 8 ((𝜑𝐵𝑍) → (𝐺‘(𝐺𝐵)) = 𝐵)
3130oveq1d 7420 . . . . . . 7 ((𝜑𝐵𝑍) → ((𝐺‘(𝐺𝐵)) +s 1s ) = (𝐵 +s 1s ))
3228, 31eqtrd 2770 . . . . . 6 ((𝜑𝐵𝑍) → (𝐺‘suc (𝐺𝐵)) = (𝐵 +s 1s ))
33 f1ocnvfv 7271 . . . . . 6 ((𝐺:ω–1-1-onto𝑍 ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 +s 1s ) → (𝐺‘(𝐵 +s 1s )) = suc (𝐺𝐵)))
3426, 32, 33sylc 65 . . . . 5 ((𝜑𝐵𝑍) → (𝐺‘(𝐵 +s 1s )) = suc (𝐺𝐵))
3534fveq2d 6880 . . . 4 ((𝜑𝐵𝑍) → (𝑅‘(𝐺‘(𝐵 +s 1s ))) = (𝑅‘suc (𝐺𝐵)))
3635fveq2d 6880 . . 3 ((𝜑𝐵𝑍) → (2nd ‘(𝑅‘(𝐺‘(𝐵 +s 1s )))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
3719, 36eqtrd 2770 . 2 ((𝜑𝐵𝑍) → (𝑆‘(𝐵 +s 1s )) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
38 frsuc 8451 . . . . . . . . 9 ((𝐺𝐵) ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
3938adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
405fveq1d 6878 . . . . . . . . 9 (𝜑 → (𝑅‘suc (𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)))
4140adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘suc (𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)))
425fveq1d 6878 . . . . . . . . . 10 (𝜑 → (𝑅‘(𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵)))
4342fveq2d 6880 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
4443adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
4539, 41, 443eqtr4d 2780 . . . . . . 7 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
461, 2, 3, 4, 5om2noseqrdg 28250 . . . . . . . . 9 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
4746fveq2d 6880 . . . . . . . 8 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
48 df-ov 7408 . . . . . . . 8 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
4947, 48eqtr4di 2788 . . . . . . 7 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
5045, 49eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
51 fvex 6889 . . . . . . 7 (𝐺‘(𝐺𝐵)) ∈ V
52 fvex 6889 . . . . . . 7 (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V
53 oveq1 7412 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 +s 1s ) = ((𝐺‘(𝐺𝐵)) +s 1s ))
54 oveq1 7412 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
5553, 54opeq12d 4857 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 +s 1s ), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
56 oveq2 7413 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
5756opeq2d 4856 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
58 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 +s 1s ) = (𝑧 +s 1s ))
59 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
6058, 59opeq12d 4857 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 +s 1s ), (𝑧𝐹𝑦)⟩)
61 oveq2 7413 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
6261opeq2d 4856 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨(𝑧 +s 1s ), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 +s 1s ), (𝑧𝐹𝑤)⟩)
6360, 62cbvmpov 7502 . . . . . . . 8 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 +s 1s ), (𝑧𝐹𝑤)⟩)
64 opex 5439 . . . . . . . 8 ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V
6555, 57, 63, 64ovmpo 7567 . . . . . . 7 (((𝐺‘(𝐺𝐵)) ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
6651, 52, 65mp2an 692 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩
6750, 66eqtrdi 2786 . . . . 5 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
6867fveq2d 6880 . . . 4 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
69 ovex 7438 . . . . 5 ((𝐺‘(𝐺𝐵)) +s 1s ) ∈ V
70 ovex 7438 . . . . 5 ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ V
7169, 70op2nd 7997 . . . 4 (2nd ‘⟨((𝐺‘(𝐺𝐵)) +s 1s ), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))
7268, 71eqtrdi 2786 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ω) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
7323, 72syldan 591 . 2 ((𝜑𝐵𝑍) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
741, 2, 3, 4, 5noseqrdglem 28251 . . . . . 6 ((𝜑𝐵𝑍) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
7574, 16eleqtrrd 2837 . . . . 5 ((𝜑𝐵𝑍) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆)
76 funopfv 6928 . . . . 5 (Fun 𝑆 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆 → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
779, 75, 76sylc 65 . . . 4 ((𝜑𝐵𝑍) → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
7877eqcomd 2741 . . 3 ((𝜑𝐵𝑍) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑆𝐵))
7930, 78oveq12d 7423 . 2 ((𝜑𝐵𝑍) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑆𝐵)))
8037, 73, 793eqtrd 2774 1 ((𝜑𝐵𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cmpt 5201  ccnv 5653  ran crn 5655  cres 5656  cima 5657  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  2nd c2nd 7987  reccrdg 8423   No csur 27603   1s c1s 27787   +s cadds 27918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec2 27908  df-adds 27919
This theorem is referenced by:  seqsp1  28257
  Copyright terms: Public domain W3C validator