Step | Hyp | Ref
| Expression |
1 | | om2noseq.1 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ No
) |
2 | | om2noseq.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
3 | | om2noseq.3 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “
ω)) |
4 | | noseqrdg.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
5 | | noseqrdg.2 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
6 | | noseqrdg.3 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = ran 𝑅) |
7 | 1, 2, 3, 4, 5, 6 | noseqrdgfn 28199 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn 𝑍) |
8 | 7 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝑆 Fn 𝑍) |
9 | 8 | fnfund 6660 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → Fun 𝑆) |
10 | 3 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “
ω)) |
11 | 1 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐶 ∈ No
) |
12 | | simpr 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐵 ∈ 𝑍) |
13 | 10, 11, 12 | noseqp1 28184 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐵 +s 1s ) ∈ 𝑍) |
14 | 1, 2, 3, 4, 5 | noseqrdglem 28198 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 +s 1s ) ∈ 𝑍) → 〈(𝐵 +s 1s ),
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s ))))〉
∈ ran 𝑅) |
15 | 13, 14 | syldan 589 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈(𝐵 +s 1s ),
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s ))))〉
∈ ran 𝑅) |
16 | 6 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝑆 = ran 𝑅) |
17 | 15, 16 | eleqtrrd 2832 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈(𝐵 +s 1s ),
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s ))))〉
∈ 𝑆) |
18 | | funopfv 6954 |
. . . 4
⊢ (Fun
𝑆 → (〈(𝐵 +s 1s ),
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s ))))〉
∈ 𝑆 → (𝑆‘(𝐵 +s 1s )) =
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s
)))))) |
19 | 9, 17, 18 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘(𝐵 +s 1s )) =
(2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s
))))) |
20 | 1, 2, 3 | om2noseqf1o 28194 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
21 | 20 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐺:ω–1-1-onto→𝑍) |
22 | | f1ocnvdm 7300 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) |
23 | 20, 22 | sylan 578 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘𝐵) ∈ ω) |
24 | | peano2 7902 |
. . . . . . . 8
⊢ ((◡𝐺‘𝐵) ∈ ω → suc (◡𝐺‘𝐵) ∈ ω) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → suc (◡𝐺‘𝐵) ∈ ω) |
26 | 21, 25 | jca 510 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺:ω–1-1-onto→𝑍 ∧ suc (◡𝐺‘𝐵) ∈ ω)) |
27 | 2 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾
ω)) |
28 | 11, 27, 23 | om2noseqsuc 28190 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺‘suc (◡𝐺‘𝐵)) = ((𝐺‘(◡𝐺‘𝐵)) +s 1s
)) |
29 | | f1ocnvfv2 7292 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
30 | 20, 29 | sylan 578 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
31 | 30 | oveq1d 7441 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → ((𝐺‘(◡𝐺‘𝐵)) +s 1s ) = (𝐵 +s 1s
)) |
32 | 28, 31 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 +s 1s
)) |
33 | | f1ocnvfv 7293 |
. . . . . 6
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ suc (◡𝐺‘𝐵) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝐵)) = (𝐵 +s 1s ) → (◡𝐺‘(𝐵 +s 1s )) = suc (◡𝐺‘𝐵))) |
34 | 26, 32, 33 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (◡𝐺‘(𝐵 +s 1s )) = suc (◡𝐺‘𝐵)) |
35 | 34 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑅‘(◡𝐺‘(𝐵 +s 1s ))) = (𝑅‘suc (◡𝐺‘𝐵))) |
36 | 35 | fveq2d 6906 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (2nd ‘(𝑅‘(◡𝐺‘(𝐵 +s 1s )))) =
(2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) |
37 | 19, 36 | eqtrd 2768 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘(𝐵 +s 1s )) =
(2nd ‘(𝑅‘suc (◡𝐺‘𝐵)))) |
38 | | frsuc 8464 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝐵) ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘(◡𝐺‘𝐵)))) |
39 | 38 | adantl 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘(◡𝐺‘𝐵)))) |
40 | 5 | fveq1d 6904 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅‘suc (◡𝐺‘𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘suc (◡𝐺‘𝐵))) |
41 | 40 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘suc (◡𝐺‘𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘suc (◡𝐺‘𝐵))) |
42 | 5 | fveq1d 6904 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘(◡𝐺‘𝐵))) |
43 | 42 | fveq2d 6906 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘(◡𝐺‘𝐵)))) |
44 | 43 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘(◡𝐺‘𝐵)))) |
45 | 39, 41, 44 | 3eqtr4d 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵)))) |
46 | 1, 2, 3, 4, 5 | om2noseqrdg 28197 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
47 | 46 | fveq2d 6906 |
. . . . . . . 8
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉)) |
48 | | df-ov 7429 |
. . . . . . . 8
⊢ ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
49 | 47, 48 | eqtr4di 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)‘(𝑅‘(◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
50 | 45, 49 | eqtrd 2768 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘suc (◡𝐺‘𝐵)) = ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
51 | | fvex 6915 |
. . . . . . 7
⊢ (𝐺‘(◡𝐺‘𝐵)) ∈ V |
52 | | fvex 6915 |
. . . . . . 7
⊢
(2nd ‘(𝑅‘(◡𝐺‘𝐵))) ∈ V |
53 | | oveq1 7433 |
. . . . . . . . 9
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧 +s 1s ) = ((𝐺‘(◡𝐺‘𝐵)) +s 1s
)) |
54 | | oveq1 7433 |
. . . . . . . . 9
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)) |
55 | 53, 54 | opeq12d 4886 |
. . . . . . . 8
⊢ (𝑧 = (𝐺‘(◡𝐺‘𝐵)) → 〈(𝑧 +s 1s ), (𝑧𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉) |
56 | | oveq2 7434 |
. . . . . . . . 9
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
57 | 56 | opeq2d 4885 |
. . . . . . . 8
⊢ (𝑤 = (2nd ‘(𝑅‘(◡𝐺‘𝐵))) → 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹𝑤)〉 = 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
58 | | oveq1 7433 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 +s 1s ) = (𝑧 +s 1s
)) |
59 | | oveq1 7433 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦)) |
60 | 58, 59 | opeq12d 4886 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉 = 〈(𝑧 +s 1s ), (𝑧𝐹𝑦)〉) |
61 | | oveq2 7434 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤)) |
62 | 61 | opeq2d 4885 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → 〈(𝑧 +s 1s ), (𝑧𝐹𝑦)〉 = 〈(𝑧 +s 1s ), (𝑧𝐹𝑤)〉) |
63 | 60, 62 | cbvmpov 7521 |
. . . . . . . 8
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉) = (𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 +s 1s ), (𝑧𝐹𝑤)〉) |
64 | | opex 5470 |
. . . . . . . 8
⊢
〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 ∈ V |
65 | 55, 57, 63, 64 | ovmpo 7587 |
. . . . . . 7
⊢ (((𝐺‘(◡𝐺‘𝐵)) ∈ V ∧ (2nd
‘(𝑅‘(◡𝐺‘𝐵))) ∈ V) → ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
66 | 51, 52, 65 | mp2an 690 |
. . . . . 6
⊢ ((𝐺‘(◡𝐺‘𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉)(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉 |
67 | 50, 66 | eqtrdi 2784 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘suc (◡𝐺‘𝐵)) = 〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) |
68 | 67 | fveq2d 6906 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = (2nd ‘〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉)) |
69 | | ovex 7459 |
. . . . 5
⊢ ((𝐺‘(◡𝐺‘𝐵)) +s 1s ) ∈
V |
70 | | ovex 7459 |
. . . . 5
⊢ ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) ∈ V |
71 | 69, 70 | op2nd 8008 |
. . . 4
⊢
(2nd ‘〈((𝐺‘(◡𝐺‘𝐵)) +s 1s ), ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))〉) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) |
72 | 68, 71 | eqtrdi 2784 |
. . 3
⊢ ((𝜑 ∧ (◡𝐺‘𝐵) ∈ ω) → (2nd
‘(𝑅‘suc (◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
73 | 23, 72 | syldan 589 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (2nd ‘(𝑅‘suc (◡𝐺‘𝐵))) = ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
74 | 1, 2, 3, 4, 5 | noseqrdglem 28198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
75 | 74, 16 | eleqtrrd 2832 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑆) |
76 | | funopfv 6954 |
. . . . 5
⊢ (Fun
𝑆 → (〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ 𝑆 → (𝑆‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵))))) |
77 | 9, 75, 76 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘𝐵) = (2nd ‘(𝑅‘(◡𝐺‘𝐵)))) |
78 | 77 | eqcomd 2734 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (2nd ‘(𝑅‘(◡𝐺‘𝐵))) = (𝑆‘𝐵)) |
79 | 30, 78 | oveq12d 7444 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → ((𝐺‘(◡𝐺‘𝐵))𝐹(2nd ‘(𝑅‘(◡𝐺‘𝐵)))) = (𝐵𝐹(𝑆‘𝐵))) |
80 | 37, 73, 79 | 3eqtrd 2772 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑍) → (𝑆‘(𝐵 +s 1s )) = (𝐵𝐹(𝑆‘𝐵))) |