Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c2lem4 Structured version   Visualization version   GIF version

Theorem aks6d1c2lem4 42122
Description: Claim 2 of Theorem 6.1 AKS, Preparation for injectivity proof. (Contributed by metakunt, 1-May-2025.)
Hypotheses
Ref Expression
aks6d1c2.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c2.2 𝑃 = (chr‘𝐾)
aks6d1c2.3 (𝜑𝐾 ∈ Field)
aks6d1c2.4 (𝜑𝑃 ∈ ℙ)
aks6d1c2.5 (𝜑𝑅 ∈ ℕ)
aks6d1c2.6 (𝜑𝑁 ∈ ℕ)
aks6d1c2.7 (𝜑𝑃𝑁)
aks6d1c2.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c2.9 (𝜑𝐹:(0...𝐴)⟶ℕ0)
aks6d1c2.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c2.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c2.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c2.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c2.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c2.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c2.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c2.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c2.18 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
aks6d1c2.19 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
aks6d1c2.20 (𝜑𝐼𝐶)
aks6d1c2.21 (𝜑𝐽𝐶)
aks6d1c2.22 (𝜑𝐼 < 𝐽)
aks6d1c2.23 = (.g‘(mulGrp‘(Poly1𝐾)))
aks6d1c2.24 𝑋 = (var1𝐾)
aks6d1c2.25 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))
aks6d1c2.26 (𝜑𝑈 ∈ ℕ)
aks6d1c2.27 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
Assertion
Ref Expression
aks6d1c2lem4 (𝜑 → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑔,𝑖   𝐴,   𝐴,𝑘,𝑙   𝑥,𝐴   𝐵,𝑎   𝐵,𝑔,𝑖   𝐵,𝑘,𝑙   𝑥,𝐵   𝐸,𝑎   𝑔,𝐸,𝑖   𝑘,𝐸,𝑙   𝑥,𝐸   𝑒,𝐺,𝑓,𝑦   ,𝐺   𝐼,𝑎   𝑔,𝐼,𝑖   𝑘,𝐼,𝑙   𝑥,𝐼   𝐽,𝑎   𝑔,𝐽,𝑖   𝑘,𝐽,𝑙   𝑥,𝐽   𝐾,𝑎   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖   ,𝐾   𝑥,𝐾   ,𝑀   𝑦,𝑀   𝑁,𝑎   𝑒,𝑁,𝑓,𝑦   𝑘,𝑁,𝑙   𝑥,𝑁   𝑃,𝑒,𝑓,𝑦   𝑃,𝑘,𝑙   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝜑,𝑎   𝜑,𝑔,𝑖   𝜑,   𝜑,𝑘,𝑙   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑒,𝑓,)   𝐶(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝑃(𝑔,,𝑖,𝑎)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑙)   𝑅(𝑔,,𝑖,𝑘,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝐸(𝑦,𝑒,𝑓,)   (𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝐹(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝐺(𝑥,𝑔,𝑖,𝑘,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝐼(𝑦,𝑒,𝑓,)   𝐽(𝑦,𝑒,𝑓,)   𝐾(𝑘,𝑙)   𝐿(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)   𝑀(𝑥,𝑒,𝑓,𝑔,𝑖,𝑘,𝑎,𝑙)   𝑁(𝑔,,𝑖)   𝑋(𝑥,𝑦,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑎,𝑙)

Proof of Theorem aks6d1c2lem4
Dummy variables 𝑜 𝑝 𝑞 𝑟 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . . . . . . 8 (𝜑 → ((eval1𝐾)‘𝑆) ∈ V)
2 cnvexg 7903 . . . . . . . 8 (((eval1𝐾)‘𝑆) ∈ V → ((eval1𝐾)‘𝑆) ∈ V)
31, 2syl 17 . . . . . . 7 (𝜑((eval1𝐾)‘𝑆) ∈ V)
43imaexd 7895 . . . . . 6 (𝜑 → (((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ V)
5 nfv 1914 . . . . . . 7 𝑠𝜑
6 fvexd 6876 . . . . . . . . . 10 ((𝜑 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐺))‘𝑀) ∈ V)
7 aks6d1c2.17 . . . . . . . . . 10 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
86, 7fmptd 7089 . . . . . . . . 9 (𝜑𝐻:(ℕ0m (0...𝐴))⟶V)
98ffnd 6692 . . . . . . . 8 (𝜑𝐻 Fn (ℕ0m (0...𝐴)))
109fnfund 6622 . . . . . . 7 (𝜑 → Fun 𝐻)
11 aks6d1c2.25 . . . . . . . . . . . . 13 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))
1211a1i 11 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))
1312fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((eval1𝐾)‘𝑆) = ((eval1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))))
1413fveq1d 6863 . . . . . . . . . 10 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) = (((eval1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))‘(𝐻𝑠)))
15 eqid 2730 . . . . . . . . . . . . 13 (eval1𝐾) = (eval1𝐾)
16 eqid 2730 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
17 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2730 . . . . . . . . . . . . 13 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
19 aks6d1c2.3 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Field)
2019fldcrngd 20658 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ CRing)
2120adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ CRing)
227a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀)))
23 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ = 𝑠) → = 𝑠)
2423fveq2d 6865 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ = 𝑠) → (𝐺) = (𝐺𝑠))
2524fveq2d 6865 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ = 𝑠) → ((eval1𝐾)‘(𝐺)) = ((eval1𝐾)‘(𝐺𝑠)))
2625fveq1d 6863 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ = 𝑠) → (((eval1𝐾)‘(𝐺))‘𝑀) = (((eval1𝐾)‘(𝐺𝑠))‘𝑀))
27 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑠 ∈ (ℕ0m (0...𝐴)))
28 fvexd 6876 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐺𝑠))‘𝑀) ∈ V)
2922, 26, 27, 28fvmptd 6978 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐻𝑠) = (((eval1𝐾)‘(𝐺𝑠))‘𝑀))
30 aks6d1c2.16 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
31 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3231crngmgp 20157 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
3320, 32syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
34 aks6d1c2.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℕ)
3534nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ ℕ0)
36 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾))
3733, 35, 36isprimroot 42088 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
3837biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣))))
3930, 38mpd 15 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0 ((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅𝑣)))
4039simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (Base‘(mulGrp‘𝐾)))
4131, 17mgpbas 20061 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
4240, 41eleqtrrdi 2840 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (Base‘𝐾))
4342adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑀 ∈ (Base‘𝐾))
44 aks6d1c2.1 . . . . . . . . . . . . . . . . 17 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
45 aks6d1c2.2 . . . . . . . . . . . . . . . . . 18 𝑃 = (chr‘𝐾)
4619adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Field)
47 aks6d1c2.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℙ)
4847adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑃 ∈ ℙ)
4934adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑅 ∈ ℕ)
50 aks6d1c2.6 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ)
5150adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑁 ∈ ℕ)
52 aks6d1c2.7 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃𝑁)
5352adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑃𝑁)
54 aks6d1c2.8 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 gcd 𝑅) = 1)
5554adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝑁 gcd 𝑅) = 1)
56 elmapi 8825 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (ℕ0m (0...𝐴)) → 𝑠:(0...𝐴)⟶ℕ0)
5756adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑠:(0...𝐴)⟶ℕ0)
58 aks6d1c2.10 . . . . . . . . . . . . . . . . . 18 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
59 aks6d1c2.11 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℕ0)
6059adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐴 ∈ ℕ0)
61 0nn0 12464 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
6261a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 0 ∈ ℕ0)
63 eqid 2730 . . . . . . . . . . . . . . . . . 18 ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0))
64 aks6d1c2.14 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
6564adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
66 aks6d1c2.15 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
6766adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
6844, 45, 46, 48, 49, 51, 53, 55, 57, 58, 60, 62, 62, 63, 65, 67aks6d1c1rh 42120 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) (𝐺𝑠))
6944, 68aks6d1c1p1rcl 42103 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((𝑃↑0) · ((𝑁 / 𝑃)↑0)) ∈ ℕ ∧ (𝐺𝑠) ∈ (Base‘(Poly1𝐾))))
7069simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐺𝑠) ∈ (Base‘(Poly1𝐾)))
7115, 16, 17, 18, 21, 43, 70fveval1fvcl 22227 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐺𝑠))‘𝑀) ∈ (Base‘𝐾))
7229, 71eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐻𝑠) ∈ (Base‘𝐾))
73 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(mulGrp‘(Poly1𝐾)))
74 aks6d1c2.23 . . . . . . . . . . . . . . . . 17 = (.g‘(mulGrp‘(Poly1𝐾)))
7516ply1crng 22090 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ CRing → (Poly1𝐾) ∈ CRing)
7620, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Poly1𝐾) ∈ CRing)
77 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
7877crngmgp 20157 . . . . . . . . . . . . . . . . . . 19 ((Poly1𝐾) ∈ CRing → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
7976, 78syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ CMnd)
8079cmnmndd 19741 . . . . . . . . . . . . . . . . 17 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
81 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 = (𝑟𝐸𝑜))
82 aks6d1c2.12 . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))))
84 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑘 = 𝑟)
8584oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → (𝑃𝑘) = (𝑃𝑟))
86 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → 𝑙 = 𝑜)
8786oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜))
8885, 87oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟𝑙 = 𝑜)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
89 fz0ssnn0 13590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0...𝐵) ⊆ ℕ0
9089a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0...𝐵) ⊆ ℕ0)
9190sselda 3949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑟 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0)
9291adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0)
9389sseli 3945 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0)
9493adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑜 ∈ ℕ0)
95 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V)
9683, 88, 92, 94, 95ovmpod 7544 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) = ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)))
97 prmnn 16651 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9847, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℕ)
9998nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ ℕ0)
10099adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ (0...𝐵)) → 𝑃 ∈ ℕ0)
101100adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℕ0)
102101, 92nn0expcld 14218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃𝑟) ∈ ℕ0)
10399nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ∈ ℤ)
10498nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃 ≠ 0)
10550nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℕ0)
106105nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℤ)
107 dvdsval2 16232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
108103, 104, 106, 107syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
10952, 108mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
11050nnred 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ∈ ℝ)
11198nnrpd 13000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℝ+)
112105nn0ge0d 12513 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
113110, 111, 112divge0d 13042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ (𝑁 / 𝑃))
114109, 113jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃)))
115 elnn0z 12549 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 / 𝑃) ∈ ℕ0 ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃)))
116114, 115sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 / 𝑃) ∈ ℕ0)
117116adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℕ0)
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℕ0)
119118, 94nn0expcld 14218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈ ℕ0)
120102, 119nn0mulcld 12515 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℕ0)
12196, 120eqeltrd 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ∈ ℕ0)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ∈ ℕ0)
12381, 122eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ∈ ℕ0)
124 aks6d1c2.21 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽𝐶)
125 aks6d1c2.19 . . . . . . . . . . . . . . . . . . . . 21 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))
126125a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))))
127124, 126eleqtrd 2831 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))))
12850, 47, 52, 82aks6d1c2p1 42113 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
129128ffnd 6692 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 Fn (ℕ0 × ℕ0))
13090, 90jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((0...𝐵) ⊆ ℕ0 ∧ (0...𝐵) ⊆ ℕ0))
131 aks6d1c2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
132131a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
133 aks6d1c2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
134 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅)
13550, 47, 52, 34, 54, 82, 133, 134hashscontpowcl 42115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
136135nn0red 12511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
137135nn0ge0d 12513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → 0 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
138136, 137resqrtcld 15391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ)
139138flcld 13767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ)
140136, 137sqrtge0d 15394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → 0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))
141 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → 0 ∈ ℤ)
142 flge 13774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
143138, 141, 142syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (0 ≤ (√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))) ↔ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
144140, 143mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))))
145139, 144jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
146 elnn0z 12549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0 ↔ ((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℤ ∧ 0 ≤ (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))))
147145, 146sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) ∈ ℕ0)
148132, 147eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐵 ∈ ℕ0)
149 elnn0z 12549 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
150148, 149sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
151 0z 12547 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℤ
152 eluz1 12804 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ ℤ → (𝐵 ∈ (ℤ‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)))
153151, 152ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ (ℤ‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
154150, 153sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (ℤ‘0))
155 fzn0 13506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0...𝐵) ≠ ∅ ↔ 𝐵 ∈ (ℤ‘0))
156154, 155sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0...𝐵) ≠ ∅)
157156, 156jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((0...𝐵) ≠ ∅ ∧ (0...𝐵) ≠ ∅))
158 xpnz 6135 . . . . . . . . . . . . . . . . . . . . . . 23 (((0...𝐵) ≠ ∅ ∧ (0...𝐵) ≠ ∅) ↔ ((0...𝐵) × (0...𝐵)) ≠ ∅)
159157, 158sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((0...𝐵) × (0...𝐵)) ≠ ∅)
160 ssxpb 6150 . . . . . . . . . . . . . . . . . . . . . 22 (((0...𝐵) × (0...𝐵)) ≠ ∅ → (((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 × ℕ0) ↔ ((0...𝐵) ⊆ ℕ0 ∧ (0...𝐵) ⊆ ℕ0)))
161159, 160syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 × ℕ0) ↔ ((0...𝐵) ⊆ ℕ0 ∧ (0...𝐵) ⊆ ℕ0)))
162130, 161mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 × ℕ0))
163 ovelimab 7570 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 Fn (ℕ0 × ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 × ℕ0)) → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)))
164129, 162, 163syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)))
165127, 164mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))
166123, 165r19.29vva 3198 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℕ0)
16720crngringd 20162 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Ring)
168 aks6d1c2.24 . . . . . . . . . . . . . . . . . . . 20 𝑋 = (var1𝐾)
169168, 16, 18vr1cl 22109 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Ring → 𝑋 ∈ (Base‘(Poly1𝐾)))
170167, 169syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ (Base‘(Poly1𝐾)))
17177, 18mgpbas 20061 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
172171eqcomi 2739 . . . . . . . . . . . . . . . . . . 19 (Base‘(mulGrp‘(Poly1𝐾))) = (Base‘(Poly1𝐾))
173172eleq2i 2821 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))) ↔ 𝑋 ∈ (Base‘(Poly1𝐾)))
174170, 173sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (Base‘(mulGrp‘(Poly1𝐾))))
17573, 74, 80, 166, 174mulgnn0cld 19034 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 𝑋) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
176175, 171eleqtrrdi 2840 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 𝑋) ∈ (Base‘(Poly1𝐾)))
177176adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐽 𝑋) ∈ (Base‘(Poly1𝐾)))
178170adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝑋 ∈ (Base‘(Poly1𝐾)))
17915, 168, 17, 16, 18, 21, 72evl1vard 22231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘(𝐻𝑠)) = (𝐻𝑠)))
180179simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘𝑋)‘(𝐻𝑠)) = (𝐻𝑠))
181178, 180jca 511 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝑋 ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘𝑋)‘(𝐻𝑠)) = (𝐻𝑠)))
182166adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐽 ∈ ℕ0)
18315, 16, 17, 18, 21, 72, 181, 74, 36, 182evl1expd 22239 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((𝐽 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐽 𝑋))‘(𝐻𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻𝑠))))
184183simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐽 𝑋))‘(𝐻𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻𝑠)))
18529oveq2d 7406 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
18619ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐾 ∈ Field)
18747ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈ ℙ)
18834ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑅 ∈ ℕ)
18950ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑁 ∈ ℕ)
19052ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃𝑁)
19154ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 gcd 𝑅) = 1)
192 aks6d1c2.9 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(0...𝐴)⟶ℕ0)
193192ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐹:(0...𝐴)⟶ℕ0)
19459ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐴 ∈ ℕ0)
19564ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
19666ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
19730ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
198 aks6d1c2.20 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼𝐶)
199198ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼𝐶)
200124ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽𝐶)
201 aks6d1c2.22 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 < 𝐽)
202201ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 < 𝐽)
203 aks6d1c2.26 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ∈ ℕ)
204203ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑈 ∈ ℕ)
205 aks6d1c2.27 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 = (𝐼 + (𝑈 · 𝑅)))
206205ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝐼 + (𝑈 · 𝑅)))
20727ad6antr 736 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑠 ∈ (ℕ0m (0...𝐴)))
208 simp-6r 787 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑟 ∈ (0...𝐵))
209 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑜 ∈ (0...𝐵))
210 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝑟𝐸𝑜))
211 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ (0...𝐵))
212 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ (0...𝐵))
213 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞))
214 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞))
21582a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))))
216 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑘 = 𝑝)
217216oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → (𝑃𝑘) = (𝑃𝑝))
218 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → 𝑙 = 𝑞)
219218oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞))
220217, 219oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝𝑙 = 𝑞)) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
22190sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑝 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0)
222221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0)
223222adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ ℕ0)
22489sseli 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0)
225224adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑞 ∈ ℕ0)
226225adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ ℕ0)
227 ovexd 7425 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V)
228215, 220, 223, 226, 227ovmpod 7544 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑝𝐸𝑞) = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
229214, 228eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)))
23099ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈ ℕ0)
231230, 223nn0expcld 14218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑃𝑝) ∈ ℕ0)
232116ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℕ0)
233232adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 / 𝑃) ∈ ℕ0)
234233, 226nn0expcld 14218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑁 / 𝑃)↑𝑞) ∈ ℕ0)
235231, 234nn0mulcld 12515 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ ℕ0)
236229, 235eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈ ℕ0)
237198, 126eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))))
238 ovelimab 7570 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐸 Fn (ℕ0 × ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 × ℕ0)) → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)))
239129, 162, 238syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)))
240237, 239mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))
241236, 240r19.29vva 3198 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐼 ∈ ℕ0)
242241adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐼 ∈ ℕ0)
243242ad6antr 736 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈ ℕ0)
24444, 45, 186, 187, 188, 189, 190, 191, 193, 58, 194, 82, 133, 195, 196, 197, 7, 131, 125, 199, 200, 202, 74, 168, 11, 204, 206, 207, 208, 209, 210, 211, 212, 213, 243aks6d1c2lem3 42121 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
245240ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))
246244, 245r19.29vva 3198 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
247165adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))
248246, 247r19.29vva 3198 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)))
24929eqcomd 2736 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐺𝑠))‘𝑀) = (𝐻𝑠))
250249oveq2d 7406 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘(𝐺𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻𝑠)))
251185, 248, 2503eqtrd 2769 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻𝑠)))
25215, 16, 17, 18, 21, 72, 181, 74, 36, 242evl1expd 22239 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((𝐼 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻𝑠))))
253252simprd 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻𝑠)))
254253eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(𝐻𝑠)) = (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)))
255184, 251, 2543eqtrd 2769 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐽 𝑋))‘(𝐻𝑠)) = (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)))
256177, 255jca 511 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((𝐽 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐽 𝑋))‘(𝐻𝑠)) = (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))))
25773, 74, 80, 241, 174mulgnn0cld 19034 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 𝑋) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
258171eleq2i 2821 . . . . . . . . . . . . . . . 16 ((𝐼 𝑋) ∈ (Base‘(Poly1𝐾)) ↔ (𝐼 𝑋) ∈ (Base‘(mulGrp‘(Poly1𝐾))))
259257, 258sylibr 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼 𝑋) ∈ (Base‘(Poly1𝐾)))
260259adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐼 𝑋) ∈ (Base‘(Poly1𝐾)))
261 eqidd 2731 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) = (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)))
262260, 261jca 511 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((𝐼 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) = (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))))
263 eqid 2730 . . . . . . . . . . . . 13 (-g‘(Poly1𝐾)) = (-g‘(Poly1𝐾))
264 eqid 2730 . . . . . . . . . . . . 13 (-g𝐾) = (-g𝐾)
26515, 16, 17, 18, 21, 72, 256, 262, 263, 264evl1subd 22236 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)) ∈ (Base‘(Poly1𝐾)) ∧ (((eval1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))‘(𝐻𝑠)) = ((((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))(-g𝐾)(((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)))))
266265simprd 495 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))‘(𝐻𝑠)) = ((((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))(-g𝐾)(((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))))
26721crnggrpd 20163 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → 𝐾 ∈ Grp)
26815, 16, 17, 18, 21, 72, 260fveval1fvcl 22227 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) ∈ (Base‘𝐾))
269 eqid 2730 . . . . . . . . . . . . 13 (0g𝐾) = (0g𝐾)
27017, 269, 264grpsubid 18963 . . . . . . . . . . . 12 ((𝐾 ∈ Grp ∧ (((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠)) ∈ (Base‘𝐾)) → ((((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))(-g𝐾)(((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))) = (0g𝐾))
271267, 268, 270syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))(-g𝐾)(((eval1𝐾)‘(𝐼 𝑋))‘(𝐻𝑠))) = (0g𝐾))
272266, 271eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))‘(𝐻𝑠)) = (0g𝐾))
27314, 272eqtrd 2765 . . . . . . . . 9 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) = (0g𝐾))
274 fvexd 6876 . . . . . . . . . 10 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ V)
275 elsng 4606 . . . . . . . . . 10 ((((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ V → ((((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) = (0g𝐾)))
276274, 275syl 17 . . . . . . . . 9 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ {(0g𝐾)} ↔ (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) = (0g𝐾)))
277273, 276mpbird 257 . . . . . . . 8 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ {(0g𝐾)})
27876crnggrpd 20163 . . . . . . . . . . . . . . . . 17 (𝜑 → (Poly1𝐾) ∈ Grp)
27918, 263grpsubcl 18959 . . . . . . . . . . . . . . . . 17 (((Poly1𝐾) ∈ Grp ∧ (𝐽 𝑋) ∈ (Base‘(Poly1𝐾)) ∧ (𝐼 𝑋) ∈ (Base‘(Poly1𝐾))) → ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)) ∈ (Base‘(Poly1𝐾)))
280278, 176, 259, 279syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)) ∈ (Base‘(Poly1𝐾)))
28111, 280eqeltrid 2833 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (Base‘(Poly1𝐾)))
282 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (𝐾s (Base‘𝐾)) = (𝐾s (Base‘𝐾))
28315, 16, 282, 17evl1rhm 22226 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ CRing → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
28420, 283syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))))
285 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (Base‘(𝐾s (Base‘𝐾))) = (Base‘(𝐾s (Base‘𝐾)))
28618, 285rhmf 20401 . . . . . . . . . . . . . . . . . 18 ((eval1𝐾) ∈ ((Poly1𝐾) RingHom (𝐾s (Base‘𝐾))) → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
287284, 286syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (eval1𝐾):(Base‘(Poly1𝐾))⟶(Base‘(𝐾s (Base‘𝐾))))
288287ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 ∈ (Base‘(Poly1𝐾))) → ((eval1𝐾)‘𝑆) ∈ (Base‘(𝐾s (Base‘𝐾))))
289288ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (Base‘(Poly1𝐾)) → ((eval1𝐾)‘𝑆) ∈ (Base‘(𝐾s (Base‘𝐾)))))
290281, 289mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ((eval1𝐾)‘𝑆) ∈ (Base‘(𝐾s (Base‘𝐾))))
291 fvexd 6876 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) ∈ V)
292282, 17pwsbas 17457 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Field ∧ (Base‘𝐾) ∈ V) → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
29319, 291, 292syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((Base‘𝐾) ↑m (Base‘𝐾)) = (Base‘(𝐾s (Base‘𝐾))))
294290, 293eleqtrrd 2832 . . . . . . . . . . . . 13 (𝜑 → ((eval1𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)))
295291, 291elmapd 8816 . . . . . . . . . . . . 13 (𝜑 → (((eval1𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔ ((eval1𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾)))
296294, 295mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((eval1𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾))
297 ffn 6691 . . . . . . . . . . . 12 (((eval1𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾) → ((eval1𝐾)‘𝑆) Fn (Base‘𝐾))
298296, 297syl 17 . . . . . . . . . . 11 (𝜑 → ((eval1𝐾)‘𝑆) Fn (Base‘𝐾))
299298adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((eval1𝐾)‘𝑆) Fn (Base‘𝐾))
300 fnfun 6621 . . . . . . . . . 10 (((eval1𝐾)‘𝑆) Fn (Base‘𝐾) → Fun ((eval1𝐾)‘𝑆))
301299, 300syl 17 . . . . . . . . 9 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → Fun ((eval1𝐾)‘𝑆))
302 fndm 6624 . . . . . . . . . . . 12 (((eval1𝐾)‘𝑆) Fn (Base‘𝐾) → dom ((eval1𝐾)‘𝑆) = (Base‘𝐾))
303298, 302syl 17 . . . . . . . . . . 11 (𝜑 → dom ((eval1𝐾)‘𝑆) = (Base‘𝐾))
304303adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → dom ((eval1𝐾)‘𝑆) = (Base‘𝐾))
30572, 304eleqtrrd 2832 . . . . . . . . 9 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐻𝑠) ∈ dom ((eval1𝐾)‘𝑆))
306 fvimacnv 7028 . . . . . . . . 9 ((Fun ((eval1𝐾)‘𝑆) ∧ (𝐻𝑠) ∈ dom ((eval1𝐾)‘𝑆)) → ((((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ {(0g𝐾)} ↔ (𝐻𝑠) ∈ (((eval1𝐾)‘𝑆) “ {(0g𝐾)})))
307301, 305, 306syl2anc 584 . . . . . . . 8 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → ((((eval1𝐾)‘𝑆)‘(𝐻𝑠)) ∈ {(0g𝐾)} ↔ (𝐻𝑠) ∈ (((eval1𝐾)‘𝑆) “ {(0g𝐾)})))
308277, 307mpbid 232 . . . . . . 7 ((𝜑𝑠 ∈ (ℕ0m (0...𝐴))) → (𝐻𝑠) ∈ (((eval1𝐾)‘𝑆) “ {(0g𝐾)}))
3095, 10, 308funimassd 6930 . . . . . 6 (𝜑 → (𝐻 “ (ℕ0m (0...𝐴))) ⊆ (((eval1𝐾)‘𝑆) “ {(0g𝐾)}))
3104, 309ssexd 5282 . . . . 5 (𝜑 → (𝐻 “ (ℕ0m (0...𝐴))) ∈ V)
31111a1i 11 . . . . . . . . . . 11 (𝜑𝑆 = ((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋)))
312311fveq2d 6865 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘𝑆) = ((deg1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))))
313 eqid 2730 . . . . . . . . . . 11 (deg1𝐾) = (deg1𝐾)
314 isfld 20656 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
315314biimpi 216 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
316315simpld 494 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
317 drngnzr 20664 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
318316, 317syl 17 . . . . . . . . . . . . . . 15 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
31919, 318syl 17 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ NzRing)
320313, 16, 168, 77, 74deg1pw 26033 . . . . . . . . . . . . . 14 ((𝐾 ∈ NzRing ∧ 𝐼 ∈ ℕ0) → ((deg1𝐾)‘(𝐼 𝑋)) = 𝐼)
321319, 241, 320syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝐼 𝑋)) = 𝐼)
322321eqcomd 2736 . . . . . . . . . . . 12 (𝜑𝐼 = ((deg1𝐾)‘(𝐼 𝑋)))
323313, 16, 168, 77, 74deg1pw 26033 . . . . . . . . . . . . . 14 ((𝐾 ∈ NzRing ∧ 𝐽 ∈ ℕ0) → ((deg1𝐾)‘(𝐽 𝑋)) = 𝐽)
324319, 166, 323syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(𝐽 𝑋)) = 𝐽)
325324eqcomd 2736 . . . . . . . . . . . 12 (𝜑𝐽 = ((deg1𝐾)‘(𝐽 𝑋)))
326201, 322, 3253brtr3d 5141 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘(𝐼 𝑋)) < ((deg1𝐾)‘(𝐽 𝑋)))
32716, 313, 167, 18, 263, 176, 259, 326deg1sub 26020 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))) = ((deg1𝐾)‘(𝐽 𝑋)))
328312, 327eqtrd 2765 . . . . . . . . 9 (𝜑 → ((deg1𝐾)‘𝑆) = ((deg1𝐾)‘(𝐽 𝑋)))
329328, 324eqtrd 2765 . . . . . . . 8 (𝜑 → ((deg1𝐾)‘𝑆) = 𝐽)
330329, 166eqeltrd 2829 . . . . . . 7 (𝜑 → ((deg1𝐾)‘𝑆) ∈ ℕ0)
331 eqid 2730 . . . . . . . 8 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
332 fldidom 20687 . . . . . . . . 9 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
33319, 332syl 17 . . . . . . . 8 (𝜑𝐾 ∈ IDomn)
334313, 16, 331, 18deg1nn0clb 26002 . . . . . . . . . 10 ((𝐾 ∈ Ring ∧ 𝑆 ∈ (Base‘(Poly1𝐾))) → (𝑆 ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘𝑆) ∈ ℕ0))
335167, 281, 334syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑆 ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘𝑆) ∈ ℕ0))
336330, 335mpbird 257 . . . . . . . 8 (𝜑𝑆 ≠ (0g‘(Poly1𝐾)))
33716, 18, 313, 15, 269, 331, 333, 281, 336fta1g 26082 . . . . . . 7 (𝜑 → (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ≤ ((deg1𝐾)‘𝑆))
338 hashbnd 14308 . . . . . . 7 (((((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ V ∧ ((deg1𝐾)‘𝑆) ∈ ℕ0 ∧ (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ≤ ((deg1𝐾)‘𝑆)) → (((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ Fin)
3394, 330, 337, 338syl3anc 1373 . . . . . 6 (𝜑 → (((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ Fin)
340 hashcl 14328 . . . . . 6 ((((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ Fin → (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ∈ ℕ0)
341339, 340syl 17 . . . . 5 (𝜑 → (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ∈ ℕ0)
342 hashss 14381 . . . . . 6 (((((eval1𝐾)‘𝑆) “ {(0g𝐾)}) ∈ V ∧ (𝐻 “ (ℕ0m (0...𝐴))) ⊆ (((eval1𝐾)‘𝑆) “ {(0g𝐾)})) → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})))
3434, 309, 342syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})))
344 hashbnd 14308 . . . . 5 (((𝐻 “ (ℕ0m (0...𝐴))) ∈ V ∧ (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ∈ ℕ0 ∧ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)}))) → (𝐻 “ (ℕ0m (0...𝐴))) ∈ Fin)
345310, 341, 343, 344syl3anc 1373 . . . 4 (𝜑 → (𝐻 “ (ℕ0m (0...𝐴))) ∈ Fin)
346 hashcl 14328 . . . 4 ((𝐻 “ (ℕ0m (0...𝐴))) ∈ Fin → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℕ0)
347345, 346syl 17 . . 3 (𝜑 → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℕ0)
348347nn0red 12511 . 2 (𝜑 → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ∈ ℝ)
349341nn0red 12511 . 2 (𝜑 → (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ∈ ℝ)
350105, 148nn0expcld 14218 . . 3 (𝜑 → (𝑁𝐵) ∈ ℕ0)
351350nn0red 12511 . 2 (𝜑 → (𝑁𝐵) ∈ ℝ)
352166nn0red 12511 . . . . . 6 (𝜑𝐽 ∈ ℝ)
353324, 352eqeltrd 2829 . . . . 5 (𝜑 → ((deg1𝐾)‘(𝐽 𝑋)) ∈ ℝ)
354327, 353eqeltrd 2829 . . . 4 (𝜑 → ((deg1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))) ∈ ℝ)
355312, 354eqeltrd 2829 . . 3 (𝜑 → ((deg1𝐾)‘𝑆) ∈ ℝ)
35697nnred 12208 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35747, 356syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ)
358357adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 𝑃 ∈ ℝ)
359358adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℝ)
360359, 92reexpcld 14135 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃𝑟) ∈ ℝ)
361110, 357, 104redivcld 12017 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 𝑃) ∈ ℝ)
362361adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ)
363362adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ)
364363, 94reexpcld 14135 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈ ℝ)
365360, 364remulcld 11211 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℝ)
366357, 148reexpcld 14135 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝐵) ∈ ℝ)
367366adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (0...𝐵)) → (𝑃𝐵) ∈ ℝ)
368361, 148reexpcld 14135 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ)
369368adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ)
370367, 369remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (0...𝐵)) → ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ)
371370adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ)
372110, 148reexpcld 14135 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝐵) ∈ ℝ)
373372adantr 480 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (0...𝐵)) → (𝑁𝐵) ∈ ℝ)
374373adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁𝐵) ∈ ℝ)
375367adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃𝐵) ∈ ℝ)
376369adantr 480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ)
377 0red 11184 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℝ)
378 1red 11182 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
379 0le1 11708 . . . . . . . . . . . . . . . . 17 0 ≤ 1
380379a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
381 prmgt1 16674 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 1 < 𝑃)
38247, 381syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 < 𝑃)
383378, 357, 382ltled 11329 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ 𝑃)
384377, 378, 357, 380, 383letrd 11338 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑃)
385384adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 0 ≤ 𝑃)
386385adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ 𝑃)
387359, 92, 386expge0d 14136 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑃𝑟))
388113adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃))
389388adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃))
390363, 94, 389expge0d 14136 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ ((𝑁 / 𝑃)↑𝑜))
39198nnge1d 12241 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑃)
392391adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 1 ≤ 𝑃)
393392adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ 𝑃)
394 elfzuz3 13489 . . . . . . . . . . . . . . 15 (𝑟 ∈ (0...𝐵) → 𝐵 ∈ (ℤ𝑟))
395394adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ𝑟))
396395adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ𝑟))
397359, 393, 396leexp2ad 14226 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃𝑟) ≤ (𝑃𝐵))
398357recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℂ)
399398mullidd 11199 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 · 𝑃) = 𝑃)
40098nnzd 12563 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℤ)
401 dvdsle 16287 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃𝑁𝑃𝑁))
402400, 50, 401syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃𝑁𝑃𝑁))
40352, 402mpd 15 . . . . . . . . . . . . . . . . 17 (𝜑𝑃𝑁)
404399, 403eqbrtrd 5132 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · 𝑃) ≤ 𝑁)
405378, 110, 111lemuldivd 13051 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃)))
406404, 405mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (𝑁 / 𝑃))
407406adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃))
408407adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃))
409 elfzuz3 13489 . . . . . . . . . . . . . 14 (𝑜 ∈ (0...𝐵) → 𝐵 ∈ (ℤ𝑜))
410409adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ𝑜))
411363, 408, 410leexp2ad 14226 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ≤ ((𝑁 / 𝑃)↑𝐵))
412360, 375, 364, 376, 387, 390, 397, 411lemul12ad 12132 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)))
413110recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
414413, 398, 104divcan2d 11967 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
415414eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝑁 = (𝑃 · (𝑁 / 𝑃)))
416415adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
417416adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
418417oveq1d 7405 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁𝐵) = ((𝑃 · (𝑁 / 𝑃))↑𝐵))
419359recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℂ)
420363recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℂ)
421148ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ ℕ0)
422419, 420, 421mulexpd 14133 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃 · (𝑁 / 𝑃))↑𝐵) = ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)))
423418, 422eqtr2d 2766 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)) = (𝑁𝐵))
424374leidd 11751 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁𝐵) ≤ (𝑁𝐵))
425423, 424eqbrtrd 5132 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝐵) · ((𝑁 / 𝑃)↑𝐵)) ≤ (𝑁𝐵))
426365, 371, 374, 412, 425letrd 11338 . . . . . . . . . 10 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ (𝑁𝐵))
42796, 426eqbrtrd 5132 . . . . . . . . 9 (((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ≤ (𝑁𝐵))
428427adantr 480 . . . . . . . 8 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ≤ (𝑁𝐵))
42981, 428eqbrtrd 5132 . . . . . . 7 ((((𝜑𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ≤ (𝑁𝐵))
430429, 165r19.29vva 3198 . . . . . 6 (𝜑𝐽 ≤ (𝑁𝐵))
431324, 430eqbrtrd 5132 . . . . 5 (𝜑 → ((deg1𝐾)‘(𝐽 𝑋)) ≤ (𝑁𝐵))
432327, 431eqbrtrd 5132 . . . 4 (𝜑 → ((deg1𝐾)‘((𝐽 𝑋)(-g‘(Poly1𝐾))(𝐼 𝑋))) ≤ (𝑁𝐵))
433312, 432eqbrtrd 5132 . . 3 (𝜑 → ((deg1𝐾)‘𝑆) ≤ (𝑁𝐵))
434349, 355, 351, 337, 433letrd 11338 . 2 (𝜑 → (♯‘(((eval1𝐾)‘𝑆) “ {(0g𝐾)})) ≤ (𝑁𝐵))
435348, 349, 351, 343, 434letrd 11338 1 (𝜑 → (♯‘(𝐻 “ (ℕ0m (0...𝐴)))) ≤ (𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  {copab 5172  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759  cexp 14033  chash 14302  csqrt 15206  cdvds 16229   gcd cgcd 16471  cprime 16648  Basecbs 17186  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  s cpws 17416  Grpcgrp 18872  -gcsg 18874  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385   RingIso crs 20386  NzRingcnzr 20428  IDomncidom 20609  DivRingcdr 20645  Fieldcfield 20646  ℤRHomczrh 21416  chrcchr 21418  ℤ/nczn 21419  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  eval1ce1 22208  deg1cdg1 25966   PrimRoots cprimroots 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-rim 20389  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-zn 21423  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-primroots 42087
This theorem is referenced by:  aks6d1c2  42125
  Copyright terms: Public domain W3C validator