| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6921 |
. . . . . . . 8
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ V) |
| 2 | | cnvexg 7946 |
. . . . . . . 8
⊢
(((eval1‘𝐾)‘𝑆) ∈ V → ◡((eval1‘𝐾)‘𝑆) ∈ V) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ◡((eval1‘𝐾)‘𝑆) ∈ V) |
| 4 | 3 | imaexd 7938 |
. . . . . 6
⊢ (𝜑 → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V) |
| 5 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑠𝜑 |
| 6 | | fvexd 6921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) ∈ V) |
| 7 | | aks6d1c2.17 |
. . . . . . . . . 10
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) |
| 8 | 6, 7 | fmptd 7134 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(ℕ0 ↑m
(0...𝐴))⟶V) |
| 9 | 8 | ffnd 6737 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 Fn (ℕ0 ↑m
(0...𝐴))) |
| 10 | 9 | fnfund 6669 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐻) |
| 11 | | aks6d1c2.25 |
. . . . . . . . . . . . 13
⊢ 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) |
| 12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) |
| 13 | 12 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((eval1‘𝐾)‘𝑆) = ((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))) |
| 14 | 13 | fveq1d 6908 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠))) |
| 15 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(eval1‘𝐾) = (eval1‘𝐾) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
| 17 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 18 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
| 19 | | aks6d1c2.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ Field) |
| 20 | 19 | fldcrngd 20742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ CRing) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ CRing) |
| 22 | 7 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀))) |
| 23 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → ℎ = 𝑠) |
| 24 | 23 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → (𝐺‘ℎ) = (𝐺‘𝑠)) |
| 25 | 24 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → ((eval1‘𝐾)‘(𝐺‘ℎ)) = ((eval1‘𝐾)‘(𝐺‘𝑠))) |
| 26 | 25 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) |
| 27 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
| 28 | | fvexd 6921 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) ∈ V) |
| 29 | 22, 26, 27, 28 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) |
| 30 | | aks6d1c2.16 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| 31 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
| 32 | 31 | crngmgp 20238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
| 33 | 20, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
| 34 | | aks6d1c2.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 35 | 34 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
| 36 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
| 37 | 33, 35, 36 | isprimroot 42094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
| 38 | 37 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
| 39 | 30, 38 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣))) |
| 40 | 39 | simp1d 1143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (Base‘(mulGrp‘𝐾))) |
| 41 | 31, 17 | mgpbas 20142 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
| 42 | 40, 41 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑀 ∈ (Base‘𝐾)) |
| 44 | | aks6d1c2.1 |
. . . . . . . . . . . . . . . . 17
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| 45 | | aks6d1c2.2 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑃 = (chr‘𝐾) |
| 46 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Field) |
| 47 | | aks6d1c2.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑃 ∈ ℙ) |
| 49 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑅 ∈ ℕ) |
| 50 | | aks6d1c2.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑁 ∈ ℕ) |
| 52 | | aks6d1c2.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑃 ∥ 𝑁) |
| 54 | | aks6d1c2.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑁 gcd 𝑅) = 1) |
| 56 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑠:(0...𝐴)⟶ℕ0) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑠:(0...𝐴)⟶ℕ0) |
| 58 | | aks6d1c2.10 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| 59 | | aks6d1c2.11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐴 ∈
ℕ0) |
| 61 | | 0nn0 12541 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℕ0 |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 0 ∈
ℕ0) |
| 63 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) |
| 64 | | aks6d1c2.14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 66 | | aks6d1c2.15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 67 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 68 | 44, 45, 46, 48, 49, 51, 53, 55, 57, 58, 60, 62, 62, 63, 65, 67 | aks6d1c1rh 42126 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) ∼ (𝐺‘𝑠)) |
| 69 | 44, 68 | aks6d1c1p1rcl 42109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((𝑃↑0) · ((𝑁 / 𝑃)↑0)) ∈ ℕ ∧ (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾)))) |
| 70 | 69 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾))) |
| 71 | 15, 16, 17, 18, 21, 43, 70 | fveval1fvcl 22337 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) ∈ (Base‘𝐾)) |
| 72 | 29, 71 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ (Base‘𝐾)) |
| 73 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
| 74 | | aks6d1c2.23 |
. . . . . . . . . . . . . . . . 17
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘𝐾))) |
| 75 | 16 | ply1crng 22200 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) |
| 76 | 20, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CRing) |
| 77 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘(Poly1‘𝐾)) =
(mulGrp‘(Poly1‘𝐾)) |
| 78 | 77 | crngmgp 20238 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Poly1‘𝐾) ∈ CRing →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
| 79 | 76, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
| 80 | 79 | cmnmndd 19822 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) |
| 81 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 = (𝑟𝐸𝑜)) |
| 82 | | aks6d1c2.12 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
| 84 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑘 = 𝑟) |
| 85 | 84 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → (𝑃↑𝑘) = (𝑃↑𝑟)) |
| 86 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑙 = 𝑜) |
| 87 | 86 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜)) |
| 88 | 85, 87 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
| 89 | | fz0ssnn0 13662 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐵) ⊆
ℕ0 |
| 90 | 89 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...𝐵) ⊆
ℕ0) |
| 91 | 90 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0) |
| 93 | 89 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑜 ∈ ℕ0) |
| 95 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V) |
| 96 | 83, 88, 92, 94, 95 | ovmpod 7585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
| 97 | | prmnn 16711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 98 | 47, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 99 | 98 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑃 ∈
ℕ0) |
| 101 | 100 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈
ℕ0) |
| 102 | 101, 92 | nn0expcld 14285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ∈
ℕ0) |
| 103 | 99 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 104 | 98 | nnne0d 12316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ≠ 0) |
| 105 | 50 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 106 | 105 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 107 | | dvdsval2 16293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
| 108 | 103, 104,
106, 107 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
| 109 | 52, 108 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℤ) |
| 110 | 50 | nnred 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 111 | 98 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
| 112 | 105 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 0 ≤ 𝑁) |
| 113 | 110, 111,
112 | divge0d 13117 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 0 ≤ (𝑁 / 𝑃)) |
| 114 | 109, 113 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃))) |
| 115 | | elnn0z 12626 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 / 𝑃) ∈ ℕ0 ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃))) |
| 116 | 114, 115 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 / 𝑃) ∈
ℕ0) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
| 119 | 118, 94 | nn0expcld 14285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈
ℕ0) |
| 120 | 102, 119 | nn0mulcld 12592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈
ℕ0) |
| 121 | 96, 120 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ∈
ℕ0) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ∈
ℕ0) |
| 123 | 81, 122 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ∈
ℕ0) |
| 124 | | aks6d1c2.21 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ 𝐶) |
| 125 | | aks6d1c2.19 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) |
| 126 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
| 127 | 124, 126 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
| 128 | 50, 47, 52, 82 | aks6d1c2p1 42119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℕ) |
| 129 | 128 | ffnd 6737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
| 130 | 90, 90 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((0...𝐵) ⊆ ℕ0 ∧
(0...𝐵) ⊆
ℕ0)) |
| 131 | | aks6d1c2.18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
| 132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
| 133 | | aks6d1c2.13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
| 134 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
| 135 | 50, 47, 52, 34, 54, 82, 133, 134 | hashscontpowcl 42121 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
| 136 | 135 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
| 137 | 135 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
| 138 | 136, 137 | resqrtcld 15456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) |
| 139 | 138 | flcld 13838 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ) |
| 140 | 136, 137 | sqrtge0d 15459 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
| 141 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 0 ∈
ℤ) |
| 142 | | flge 13845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 143 | 138, 141,
142 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 144 | 140, 143 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
| 145 | 139, 144 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 →
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 146 | | elnn0z 12626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0 ↔
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
| 147 | 145, 146 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0) |
| 148 | 132, 147 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
| 149 | | elnn0z 12626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℤ
∧ 0 ≤ 𝐵)) |
| 150 | 148, 149 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) |
| 151 | | 0z 12624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℤ |
| 152 | | eluz1 12882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (0 ∈
ℤ → (𝐵 ∈
(ℤ≥‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))) |
| 153 | 151, 152 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈
(ℤ≥‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) |
| 154 | 150, 153 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐵 ∈
(ℤ≥‘0)) |
| 155 | | fzn0 13578 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((0...𝐵) ≠
∅ ↔ 𝐵 ∈
(ℤ≥‘0)) |
| 156 | 154, 155 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...𝐵) ≠ ∅) |
| 157 | 156, 156 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...𝐵) ≠ ∅ ∧ (0...𝐵) ≠ ∅)) |
| 158 | | xpnz 6179 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝐵) ≠
∅ ∧ (0...𝐵) ≠
∅) ↔ ((0...𝐵)
× (0...𝐵)) ≠
∅) |
| 159 | 157, 158 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((0...𝐵) × (0...𝐵)) ≠ ∅) |
| 160 | | ssxpb 6194 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((0...𝐵) ×
(0...𝐵)) ≠ ∅
→ (((0...𝐵) ×
(0...𝐵)) ⊆
(ℕ0 × ℕ0) ↔ ((0...𝐵) ⊆ ℕ0
∧ (0...𝐵) ⊆
ℕ0))) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0) ↔ ((0...𝐵) ⊆ ℕ0 ∧
(0...𝐵) ⊆
ℕ0))) |
| 162 | 130, 161 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) |
| 163 | | ovelimab 7611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))) |
| 164 | 129, 162,
163 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))) |
| 165 | 127, 164 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)) |
| 166 | 123, 165 | r19.29vva 3216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 167 | 20 | crngringd 20243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ Ring) |
| 168 | | aks6d1c2.24 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑋 = (var1‘𝐾) |
| 169 | 168, 16, 18 | vr1cl 22219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
| 170 | 167, 169 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
| 171 | 77, 18 | mgpbas 20142 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
| 172 | 171 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾)) |
| 173 | 172 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈
(Base‘(mulGrp‘(Poly1‘𝐾))) ↔ 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
| 174 | 170, 173 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
| 175 | 73, 74, 80, 166, 174 | mulgnn0cld 19113 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
| 176 | 175, 171 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
| 177 | 176 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
| 178 | 170 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
| 179 | 15, 168, 17, 16, 18, 21, 72 | evl1vard 22341 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠))) |
| 180 | 179 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠)) |
| 181 | 178, 180 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠))) |
| 182 | 166 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐽 ∈
ℕ0) |
| 183 | 15, 16, 17, 18, 21, 72, 181, 74, 36, 182 | evl1expd 22349 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)))) |
| 184 | 183 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
| 185 | 29 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
| 186 | 19 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐾 ∈ Field) |
| 187 | 47 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈ ℙ) |
| 188 | 34 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑅 ∈ ℕ) |
| 189 | 50 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑁 ∈ ℕ) |
| 190 | 52 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∥ 𝑁) |
| 191 | 54 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 192 | | aks6d1c2.9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
| 193 | 192 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐹:(0...𝐴)⟶ℕ0) |
| 194 | 59 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐴 ∈
ℕ0) |
| 195 | 64 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 196 | 66 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| 197 | 30 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| 198 | | aks6d1c2.20 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 ∈ 𝐶) |
| 199 | 198 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈ 𝐶) |
| 200 | 124 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 ∈ 𝐶) |
| 201 | | aks6d1c2.22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 < 𝐽) |
| 202 | 201 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 < 𝐽) |
| 203 | | aks6d1c2.26 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑈 ∈ ℕ) |
| 204 | 203 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑈 ∈ ℕ) |
| 205 | | aks6d1c2.27 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 = (𝐼 + (𝑈 · 𝑅))) |
| 206 | 205 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝐼 + (𝑈 · 𝑅))) |
| 207 | 27 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
| 208 | | simp-6r 788 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑟 ∈ (0...𝐵)) |
| 209 | | simp-5r 786 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑜 ∈ (0...𝐵)) |
| 210 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝑟𝐸𝑜)) |
| 211 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ (0...𝐵)) |
| 212 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ (0...𝐵)) |
| 213 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞)) |
| 214 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞)) |
| 215 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
| 216 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑘 = 𝑝) |
| 217 | 216 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → (𝑃↑𝑘) = (𝑃↑𝑝)) |
| 218 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑙 = 𝑞) |
| 219 | 218 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞)) |
| 220 | 217, 219 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
| 221 | 90 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0) |
| 222 | 221 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0) |
| 223 | 222 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ ℕ0) |
| 224 | 89 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0) |
| 225 | 224 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑞 ∈ ℕ0) |
| 226 | 225 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ ℕ0) |
| 227 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V) |
| 228 | 215, 220,
223, 226, 227 | ovmpod 7585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑝𝐸𝑞) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
| 229 | 214, 228 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
| 230 | 99 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈
ℕ0) |
| 231 | 230, 223 | nn0expcld 14285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑃↑𝑝) ∈
ℕ0) |
| 232 | 116 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
| 233 | 232 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 / 𝑃) ∈
ℕ0) |
| 234 | 233, 226 | nn0expcld 14285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑁 / 𝑃)↑𝑞) ∈
ℕ0) |
| 235 | 231, 234 | nn0mulcld 12592 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈
ℕ0) |
| 236 | 229, 235 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈
ℕ0) |
| 237 | 198, 126 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
| 238 | | ovelimab 7611 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))) |
| 239 | 129, 162,
238 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))) |
| 240 | 237, 239 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)) |
| 241 | 236, 240 | r19.29vva 3216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
| 242 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐼 ∈
ℕ0) |
| 243 | 242 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈
ℕ0) |
| 244 | 44, 45, 186, 187, 188, 189, 190, 191, 193, 58, 194, 82, 133, 195, 196, 197, 7, 131, 125, 199, 200, 202, 74, 168, 11, 204, 206, 207, 208, 209, 210, 211, 212, 213, 243 | aks6d1c2lem3 42127 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
| 245 | 240 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)) |
| 246 | 244, 245 | r19.29vva 3216 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
| 247 | 165 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)) |
| 248 | 246, 247 | r19.29vva 3216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
| 249 | 29 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) = (𝐻‘𝑠)) |
| 250 | 249 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
| 251 | 185, 248,
250 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
| 252 | 15, 16, 17, 18, 21, 72, 181, 74, 36, 242 | evl1expd 22349 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)))) |
| 253 | 252 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
| 254 | 253 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
| 255 | 184, 251,
254 | 3eqtrd 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
| 256 | 177, 255 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
| 257 | 73, 74, 80, 241, 174 | mulgnn0cld 19113 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
| 258 | 171 | eleq2i 2833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ↔ (𝐼 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
| 259 | 257, 258 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
| 260 | 259 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
| 261 | | eqidd 2738 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
| 262 | 260, 261 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
| 263 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(-g‘(Poly1‘𝐾)) =
(-g‘(Poly1‘𝐾)) |
| 264 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(-g‘𝐾) = (-g‘𝐾) |
| 265 | 15, 16, 17, 18, 21, 72, 256, 262, 263, 264 | evl1subd 22346 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾)) ∧
(((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))))) |
| 266 | 265 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
| 267 | 21 | crnggrpd 20244 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Grp) |
| 268 | 15, 16, 17, 18, 21, 72, 260 | fveval1fvcl 22337 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) ∈ (Base‘𝐾)) |
| 269 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐾) = (0g‘𝐾) |
| 270 | 17, 269, 264 | grpsubid 19042 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Grp ∧
(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) ∈ (Base‘𝐾)) → ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) = (0g‘𝐾)) |
| 271 | 267, 268,
270 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) = (0g‘𝐾)) |
| 272 | 266, 271 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = (0g‘𝐾)) |
| 273 | 14, 272 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾)) |
| 274 | | fvexd 6921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ V) |
| 275 | | elsng 4640 |
. . . . . . . . . 10
⊢
((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ V →
((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔
(((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾))) |
| 276 | 274, 275 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔
(((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾))) |
| 277 | 273, 276 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)}) |
| 278 | 76 | crnggrpd 20244 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Grp) |
| 279 | 18, 263 | grpsubcl 19038 |
. . . . . . . . . . . . . . . . 17
⊢
(((Poly1‘𝐾) ∈ Grp ∧ (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) → ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾))) |
| 280 | 278, 176,
259, 279 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾))) |
| 281 | 11, 280 | eqeltrid 2845 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈
(Base‘(Poly1‘𝐾))) |
| 282 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ↑s
(Base‘𝐾)) = (𝐾 ↑s
(Base‘𝐾)) |
| 283 | 15, 16, 282, 17 | evl1rhm 22336 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ CRing →
(eval1‘𝐾)
∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾)))) |
| 284 | 20, 283 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(eval1‘𝐾)
∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾)))) |
| 285 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(𝐾
↑s (Base‘𝐾))) = (Base‘(𝐾 ↑s (Base‘𝐾))) |
| 286 | 18, 285 | rhmf 20485 |
. . . . . . . . . . . . . . . . . 18
⊢
((eval1‘𝐾) ∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾))) →
(eval1‘𝐾):(Base‘(Poly1‘𝐾))⟶(Base‘(𝐾 ↑s
(Base‘𝐾)))) |
| 287 | 284, 286 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(eval1‘𝐾):(Base‘(Poly1‘𝐾))⟶(Base‘(𝐾 ↑s
(Base‘𝐾)))) |
| 288 | 287 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 ∈
(Base‘(Poly1‘𝐾))) → ((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾)))) |
| 289 | 288 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 ∈
(Base‘(Poly1‘𝐾)) → ((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾))))) |
| 290 | 281, 289 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾)))) |
| 291 | | fvexd 6921 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Base‘𝐾) ∈ V) |
| 292 | 282, 17 | pwsbas 17532 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Field ∧
(Base‘𝐾) ∈ V)
→ ((Base‘𝐾)
↑m (Base‘𝐾)) = (Base‘(𝐾 ↑s (Base‘𝐾)))) |
| 293 | 19, 291, 292 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((Base‘𝐾) ↑m
(Base‘𝐾)) =
(Base‘(𝐾
↑s (Base‘𝐾)))) |
| 294 | 290, 293 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾))) |
| 295 | 291, 291 | elmapd 8880 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(((eval1‘𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔
((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾))) |
| 296 | 294, 295 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾)) |
| 297 | | ffn 6736 |
. . . . . . . . . . . 12
⊢
(((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾) → ((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
| 298 | 296, 297 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
| 299 | 298 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
| 300 | | fnfun 6668 |
. . . . . . . . . 10
⊢
(((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾) → Fun ((eval1‘𝐾)‘𝑆)) |
| 301 | 299, 300 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → Fun
((eval1‘𝐾)‘𝑆)) |
| 302 | | fndm 6671 |
. . . . . . . . . . . 12
⊢
(((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾) → dom ((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
| 303 | 298, 302 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom
((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
| 304 | 303 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → dom
((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
| 305 | 72, 304 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ dom ((eval1‘𝐾)‘𝑆)) |
| 306 | | fvimacnv 7073 |
. . . . . . . . 9
⊢ ((Fun
((eval1‘𝐾)‘𝑆) ∧ (𝐻‘𝑠) ∈ dom ((eval1‘𝐾)‘𝑆)) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔ (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
| 307 | 301, 305,
306 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔ (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
| 308 | 277, 307 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) |
| 309 | 5, 10, 308 | funimassd 6975 |
. . . . . 6
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ⊆ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) |
| 310 | 4, 309 | ssexd 5324 |
. . . . 5
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V) |
| 311 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) |
| 312 | 311 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) = ((deg1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))) |
| 313 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(deg1‘𝐾) = (deg1‘𝐾) |
| 314 | | isfld 20740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
| 315 | 314 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
| 316 | 315 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Field → 𝐾 ∈
DivRing) |
| 317 | | drngnzr 20748 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) |
| 318 | 316, 317 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Field → 𝐾 ∈ NzRing) |
| 319 | 19, 318 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ NzRing) |
| 320 | 313, 16, 168, 77, 74 | deg1pw 26160 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ NzRing ∧ 𝐼 ∈ ℕ0)
→ ((deg1‘𝐾)‘(𝐼 ↑ 𝑋)) = 𝐼) |
| 321 | 319, 241,
320 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((deg1‘𝐾)‘(𝐼 ↑ 𝑋)) = 𝐼) |
| 322 | 321 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 = ((deg1‘𝐾)‘(𝐼 ↑ 𝑋))) |
| 323 | 313, 16, 168, 77, 74 | deg1pw 26160 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ NzRing ∧ 𝐽 ∈ ℕ0)
→ ((deg1‘𝐾)‘(𝐽 ↑ 𝑋)) = 𝐽) |
| 324 | 319, 166,
323 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((deg1‘𝐾)‘(𝐽 ↑ 𝑋)) = 𝐽) |
| 325 | 324 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = ((deg1‘𝐾)‘(𝐽 ↑ 𝑋))) |
| 326 | 201, 322,
325 | 3brtr3d 5174 |
. . . . . . . . . . 11
⊢ (𝜑 →
((deg1‘𝐾)‘(𝐼 ↑ 𝑋)) < ((deg1‘𝐾)‘(𝐽 ↑ 𝑋))) |
| 327 | 16, 313, 167, 18, 263, 176, 259, 326 | deg1sub 26147 |
. . . . . . . . . 10
⊢ (𝜑 →
((deg1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) = ((deg1‘𝐾)‘(𝐽 ↑ 𝑋))) |
| 328 | 312, 327 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) = ((deg1‘𝐾)‘(𝐽 ↑ 𝑋))) |
| 329 | 328, 324 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) = 𝐽) |
| 330 | 329, 166 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) ∈
ℕ0) |
| 331 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘(Poly1‘𝐾)) =
(0g‘(Poly1‘𝐾)) |
| 332 | | fldidom 20771 |
. . . . . . . . 9
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
| 333 | 19, 332 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ IDomn) |
| 334 | 313, 16, 331, 18 | deg1nn0clb 26129 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Ring ∧ 𝑆 ∈
(Base‘(Poly1‘𝐾))) → (𝑆 ≠
(0g‘(Poly1‘𝐾)) ↔ ((deg1‘𝐾)‘𝑆) ∈
ℕ0)) |
| 335 | 167, 281,
334 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ≠
(0g‘(Poly1‘𝐾)) ↔ ((deg1‘𝐾)‘𝑆) ∈
ℕ0)) |
| 336 | 330, 335 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ≠
(0g‘(Poly1‘𝐾))) |
| 337 | 16, 18, 313, 15, 269, 331, 333, 281, 336 | fta1g 26209 |
. . . . . . 7
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤
((deg1‘𝐾)‘𝑆)) |
| 338 | | hashbnd 14375 |
. . . . . . 7
⊢ (((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V ∧
((deg1‘𝐾)‘𝑆) ∈ ℕ0 ∧
(♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤
((deg1‘𝐾)‘𝑆)) → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin) |
| 339 | 4, 330, 337, 338 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin) |
| 340 | | hashcl 14395 |
. . . . . 6
⊢ ((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin →
(♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℕ0) |
| 341 | 339, 340 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℕ0) |
| 342 | | hashss 14448 |
. . . . . 6
⊢ (((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V ∧ (𝐻 “ (ℕ0
↑m (0...𝐴))) ⊆ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) →
(♯‘(𝐻 “
(ℕ0 ↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
| 343 | 4, 309, 342 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
| 344 | | hashbnd 14375 |
. . . . 5
⊢ (((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V ∧ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈ ℕ0
∧ (♯‘(𝐻
“ (ℕ0 ↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin) |
| 345 | 310, 341,
343, 344 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin) |
| 346 | | hashcl 14395 |
. . . 4
⊢ ((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0) |
| 347 | 345, 346 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0) |
| 348 | 347 | nn0red 12588 |
. 2
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈ ℝ) |
| 349 | 341 | nn0red 12588 |
. 2
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℝ) |
| 350 | 105, 148 | nn0expcld 14285 |
. . 3
⊢ (𝜑 → (𝑁↑𝐵) ∈
ℕ0) |
| 351 | 350 | nn0red 12588 |
. 2
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) |
| 352 | 166 | nn0red 12588 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 353 | 324, 352 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 →
((deg1‘𝐾)‘(𝐽 ↑ 𝑋)) ∈ ℝ) |
| 354 | 327, 353 | eqeltrd 2841 |
. . . 4
⊢ (𝜑 →
((deg1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) ∈ ℝ) |
| 355 | 312, 354 | eqeltrd 2841 |
. . 3
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) ∈ ℝ) |
| 356 | 97 | nnred 12281 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
| 357 | 47, 356 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 358 | 357 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑃 ∈ ℝ) |
| 359 | 358 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℝ) |
| 360 | 359, 92 | reexpcld 14203 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ∈ ℝ) |
| 361 | 110, 357,
104 | redivcld 12095 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℝ) |
| 362 | 361 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ) |
| 363 | 362 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ) |
| 364 | 363, 94 | reexpcld 14203 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈ ℝ) |
| 365 | 360, 364 | remulcld 11291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℝ) |
| 366 | 357, 148 | reexpcld 14203 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃↑𝐵) ∈ ℝ) |
| 367 | 366 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑃↑𝐵) ∈ ℝ) |
| 368 | 361, 148 | reexpcld 14203 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
| 369 | 368 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
| 370 | 367, 369 | remulcld 11291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ) |
| 371 | 370 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ) |
| 372 | 110, 148 | reexpcld 14203 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) |
| 373 | 372 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁↑𝐵) ∈ ℝ) |
| 374 | 373 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) ∈ ℝ) |
| 375 | 367 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝐵) ∈ ℝ) |
| 376 | 369 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
| 377 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℝ) |
| 378 | | 1red 11262 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
| 379 | | 0le1 11786 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
1 |
| 380 | 379 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 1) |
| 381 | | prmgt1 16734 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
| 382 | 47, 381 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 < 𝑃) |
| 383 | 378, 357,
382 | ltled 11409 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝑃) |
| 384 | 377, 378,
357, 380, 383 | letrd 11418 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 𝑃) |
| 385 | 384 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 0 ≤ 𝑃) |
| 386 | 385 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ 𝑃) |
| 387 | 359, 92, 386 | expge0d 14204 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑃↑𝑟)) |
| 388 | 113 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃)) |
| 389 | 388 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃)) |
| 390 | 363, 94, 389 | expge0d 14204 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ ((𝑁 / 𝑃)↑𝑜)) |
| 391 | 98 | nnge1d 12314 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ 𝑃) |
| 392 | 391 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 1 ≤ 𝑃) |
| 393 | 392 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ 𝑃) |
| 394 | | elfzuz3 13561 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ (0...𝐵) → 𝐵 ∈ (ℤ≥‘𝑟)) |
| 395 | 394 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑟)) |
| 396 | 395 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑟)) |
| 397 | 359, 393,
396 | leexp2ad 14293 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ≤ (𝑃↑𝐵)) |
| 398 | 357 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 399 | 398 | mullidd 11279 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 · 𝑃) = 𝑃) |
| 400 | 98 | nnzd 12640 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 401 | | dvdsle 16347 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁)) |
| 402 | 400, 50, 401 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁)) |
| 403 | 52, 402 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ≤ 𝑁) |
| 404 | 399, 403 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 · 𝑃) ≤ 𝑁) |
| 405 | 378, 110,
111 | lemuldivd 13126 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃))) |
| 406 | 404, 405 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ (𝑁 / 𝑃)) |
| 407 | 406 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃)) |
| 408 | 407 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃)) |
| 409 | | elfzuz3 13561 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ (0...𝐵) → 𝐵 ∈ (ℤ≥‘𝑜)) |
| 410 | 409 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑜)) |
| 411 | 363, 408,
410 | leexp2ad 14293 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ≤ ((𝑁 / 𝑃)↑𝐵)) |
| 412 | 360, 375,
364, 376, 387, 390, 397, 411 | lemul12ad 12210 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵))) |
| 413 | 110 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 414 | 413, 398,
104 | divcan2d 12045 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 · (𝑁 / 𝑃)) = 𝑁) |
| 415 | 414 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
| 416 | 415 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
| 417 | 416 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
| 418 | 417 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) = ((𝑃 · (𝑁 / 𝑃))↑𝐵)) |
| 419 | 359 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℂ) |
| 420 | 363 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℂ) |
| 421 | 148 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈
ℕ0) |
| 422 | 419, 420,
421 | mulexpd 14201 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃 · (𝑁 / 𝑃))↑𝐵) = ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵))) |
| 423 | 418, 422 | eqtr2d 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) = (𝑁↑𝐵)) |
| 424 | 374 | leidd 11829 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) ≤ (𝑁↑𝐵)) |
| 425 | 423, 424 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ≤ (𝑁↑𝐵)) |
| 426 | 365, 371,
374, 412, 425 | letrd 11418 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ (𝑁↑𝐵)) |
| 427 | 96, 426 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ≤ (𝑁↑𝐵)) |
| 428 | 427 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ≤ (𝑁↑𝐵)) |
| 429 | 81, 428 | eqbrtrd 5165 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ≤ (𝑁↑𝐵)) |
| 430 | 429, 165 | r19.29vva 3216 |
. . . . . 6
⊢ (𝜑 → 𝐽 ≤ (𝑁↑𝐵)) |
| 431 | 324, 430 | eqbrtrd 5165 |
. . . . 5
⊢ (𝜑 →
((deg1‘𝐾)‘(𝐽 ↑ 𝑋)) ≤ (𝑁↑𝐵)) |
| 432 | 327, 431 | eqbrtrd 5165 |
. . . 4
⊢ (𝜑 →
((deg1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) ≤ (𝑁↑𝐵)) |
| 433 | 312, 432 | eqbrtrd 5165 |
. . 3
⊢ (𝜑 →
((deg1‘𝐾)‘𝑆) ≤ (𝑁↑𝐵)) |
| 434 | 349, 355,
351, 337, 433 | letrd 11418 |
. 2
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤ (𝑁↑𝐵)) |
| 435 | 348, 349,
351, 343, 434 | letrd 11418 |
1
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) |