Step | Hyp | Ref
| Expression |
1 | | fvexd 6917 |
. . . . . . . 8
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ V) |
2 | | cnvexg 7938 |
. . . . . . . 8
⊢
(((eval1‘𝐾)‘𝑆) ∈ V → ◡((eval1‘𝐾)‘𝑆) ∈ V) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ◡((eval1‘𝐾)‘𝑆) ∈ V) |
4 | 3 | imaexd 7930 |
. . . . . 6
⊢ (𝜑 → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V) |
5 | | nfv 1909 |
. . . . . . 7
⊢
Ⅎ𝑠𝜑 |
6 | | fvexd 6917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) ∈ V) |
7 | | aks6d1c2.17 |
. . . . . . . . . 10
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) |
8 | 6, 7 | fmptd 7129 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(ℕ0 ↑m
(0...𝐴))⟶V) |
9 | 8 | ffnd 6728 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 Fn (ℕ0 ↑m
(0...𝐴))) |
10 | 9 | fnfund 6660 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐻) |
11 | | aks6d1c2.25 |
. . . . . . . . . . . . 13
⊢ 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) |
12 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) |
13 | 12 | fveq2d 6906 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((eval1‘𝐾)‘𝑆) = ((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))) |
14 | 13 | fveq1d 6904 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠))) |
15 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(eval1‘𝐾) = (eval1‘𝐾) |
16 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
17 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
19 | | aks6d1c2.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ Field) |
20 | 19 | fldcrngd 20644 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ CRing) |
21 | 20 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ CRing) |
22 | 7 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀))) |
23 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → ℎ = 𝑠) |
24 | 23 | fveq2d 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → (𝐺‘ℎ) = (𝐺‘𝑠)) |
25 | 24 | fveq2d 6906 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → ((eval1‘𝐾)‘(𝐺‘ℎ)) = ((eval1‘𝐾)‘(𝐺‘𝑠))) |
26 | 25 | fveq1d 6904 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ ℎ = 𝑠) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) |
27 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
28 | | fvexd 6917 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) ∈ V) |
29 | 22, 26, 27, 28 | fvmptd 7017 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) = (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) |
30 | | aks6d1c2.16 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
31 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
32 | 31 | crngmgp 20188 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
33 | 20, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
34 | | aks6d1c2.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑅 ∈ ℕ) |
35 | 34 | nnnn0d 12570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
36 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
37 | 33, 35, 36 | isprimroot 41596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
38 | 37 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
39 | 30, 38 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣))) |
40 | 39 | simp1d 1139 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (Base‘(mulGrp‘𝐾))) |
41 | 31, 17 | mgpbas 20087 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
42 | 40, 41 | eleqtrrdi 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
43 | 42 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑀 ∈ (Base‘𝐾)) |
44 | | aks6d1c2.1 |
. . . . . . . . . . . . . . . . 17
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
45 | | aks6d1c2.2 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑃 = (chr‘𝐾) |
46 | 19 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Field) |
47 | | aks6d1c2.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℙ) |
48 | 47 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑃 ∈ ℙ) |
49 | 34 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑅 ∈ ℕ) |
50 | | aks6d1c2.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℕ) |
51 | 50 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑁 ∈ ℕ) |
52 | | aks6d1c2.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
53 | 52 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑃 ∥ 𝑁) |
54 | | aks6d1c2.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
55 | 54 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑁 gcd 𝑅) = 1) |
56 | | elmapi 8874 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (ℕ0
↑m (0...𝐴))
→ 𝑠:(0...𝐴)⟶ℕ0) |
57 | 56 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑠:(0...𝐴)⟶ℕ0) |
58 | | aks6d1c2.10 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
59 | | aks6d1c2.11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
60 | 59 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐴 ∈
ℕ0) |
61 | | 0nn0 12525 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℕ0 |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 0 ∈
ℕ0) |
63 | | eqid 2728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) = ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) |
64 | | aks6d1c2.14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
65 | 64 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
66 | | aks6d1c2.15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
67 | 66 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
68 | 44, 45, 46, 48, 49, 51, 53, 55, 57, 58, 60, 62, 62, 63, 65, 67 | aks6d1c1rh 41628 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝑃↑0) · ((𝑁 / 𝑃)↑0)) ∼ (𝐺‘𝑠)) |
69 | 44, 68 | aks6d1c1p1rcl 41611 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((𝑃↑0) · ((𝑁 / 𝑃)↑0)) ∈ ℕ ∧ (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾)))) |
70 | 69 | simprd 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐺‘𝑠) ∈
(Base‘(Poly1‘𝐾))) |
71 | 15, 16, 17, 18, 21, 43, 70 | fveval1fvcl 22259 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) ∈ (Base‘𝐾)) |
72 | 29, 71 | eqeltrd 2829 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ (Base‘𝐾)) |
73 | | eqid 2728 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
74 | | aks6d1c2.23 |
. . . . . . . . . . . . . . . . 17
⊢ ↑ =
(.g‘(mulGrp‘(Poly1‘𝐾))) |
75 | 16 | ply1crng 22124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) |
76 | 20, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(Poly1‘𝐾)
∈ CRing) |
77 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘(Poly1‘𝐾)) =
(mulGrp‘(Poly1‘𝐾)) |
78 | 77 | crngmgp 20188 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Poly1‘𝐾) ∈ CRing →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
79 | 76, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ CMnd) |
80 | 79 | cmnmndd 19766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(mulGrp‘(Poly1‘𝐾)) ∈ Mnd) |
81 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 = (𝑟𝐸𝑜)) |
82 | | aks6d1c2.12 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
84 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑘 = 𝑟) |
85 | 84 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → (𝑃↑𝑘) = (𝑃↑𝑟)) |
86 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → 𝑙 = 𝑜) |
87 | 86 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑜)) |
88 | 85, 87 | oveq12d 7444 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ (𝑘 = 𝑟 ∧ 𝑙 = 𝑜)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
89 | | fz0ssnn0 13636 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐵) ⊆
ℕ0 |
90 | 89 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...𝐵) ⊆
ℕ0) |
91 | 90 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0) |
92 | 91 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑟 ∈ ℕ0) |
93 | 89 | sseli 3978 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑜 ∈ (0...𝐵) → 𝑜 ∈ ℕ0) |
94 | 93 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑜 ∈ ℕ0) |
95 | | ovexd 7461 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ V) |
96 | 83, 88, 92, 94, 95 | ovmpod 7579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) = ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜))) |
97 | | prmnn 16652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
98 | 47, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑃 ∈ ℕ) |
99 | 98 | nnnn0d 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
100 | 99 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑃 ∈
ℕ0) |
101 | 100 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈
ℕ0) |
102 | 101, 92 | nn0expcld 14248 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ∈
ℕ0) |
103 | 99 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ∈ ℤ) |
104 | 98 | nnne0d 12300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑃 ≠ 0) |
105 | 50 | nnnn0d 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
106 | 105 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
107 | | dvdsval2 16241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
108 | 103, 104,
106, 107 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
109 | 52, 108 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℤ) |
110 | 50 | nnred 12265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℝ) |
111 | 98 | nnrpd 13054 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
112 | 105 | nn0ge0d 12573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 0 ≤ 𝑁) |
113 | 110, 111,
112 | divge0d 13096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 0 ≤ (𝑁 / 𝑃)) |
114 | 109, 113 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃))) |
115 | | elnn0z 12609 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 / 𝑃) ∈ ℕ0 ↔ ((𝑁 / 𝑃) ∈ ℤ ∧ 0 ≤ (𝑁 / 𝑃))) |
116 | 114, 115 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 / 𝑃) ∈
ℕ0) |
117 | 116 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
118 | 117 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
119 | 118, 94 | nn0expcld 14248 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈
ℕ0) |
120 | 102, 119 | nn0mulcld 12575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈
ℕ0) |
121 | 96, 120 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ∈
ℕ0) |
122 | 121 | adantr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ∈
ℕ0) |
123 | 81, 122 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ∈
ℕ0) |
124 | | aks6d1c2.21 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ 𝐶) |
125 | | aks6d1c2.19 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) |
126 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
127 | 124, 126 | eleqtrd 2831 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
128 | 50, 47, 52, 82 | aks6d1c2p1 41621 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℕ) |
129 | 128 | ffnd 6728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
130 | 90, 90 | jca 510 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((0...𝐵) ⊆ ℕ0 ∧
(0...𝐵) ⊆
ℕ0)) |
131 | | aks6d1c2.18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 =
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
133 | | aks6d1c2.13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
134 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
135 | 50, 47, 52, 34, 54, 82, 133, 134 | hashscontpowcl 41623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
136 | 135 | nn0red 12571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
137 | 135 | nn0ge0d 12573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 0 ≤
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |
138 | 136, 137 | resqrtcld 15404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 →
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ) |
139 | 138 | flcld 13803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ) |
140 | 136, 137 | sqrtge0d 15407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) |
141 | | 0zd 12608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 0 ∈
ℤ) |
142 | | flge 13810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
143 | 138, 141,
142 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (0 ≤
(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) ↔ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
144 | 140, 143 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))))) |
145 | 139, 144 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 →
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
146 | | elnn0z 12609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0 ↔
((⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℤ ∧ 0 ≤
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))))) |
147 | 145, 146 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 →
(⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))))) ∈ ℕ0) |
148 | 132, 147 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
149 | | elnn0z 12609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℤ
∧ 0 ≤ 𝐵)) |
150 | 148, 149 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) |
151 | | 0z 12607 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℤ |
152 | | eluz1 12864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (0 ∈
ℤ → (𝐵 ∈
(ℤ≥‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))) |
153 | 151, 152 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈
(ℤ≥‘0) ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) |
154 | 150, 153 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐵 ∈
(ℤ≥‘0)) |
155 | | fzn0 13555 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((0...𝐵) ≠
∅ ↔ 𝐵 ∈
(ℤ≥‘0)) |
156 | 154, 155 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...𝐵) ≠ ∅) |
157 | 156, 156 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...𝐵) ≠ ∅ ∧ (0...𝐵) ≠ ∅)) |
158 | | xpnz 6168 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝐵) ≠
∅ ∧ (0...𝐵) ≠
∅) ↔ ((0...𝐵)
× (0...𝐵)) ≠
∅) |
159 | 157, 158 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((0...𝐵) × (0...𝐵)) ≠ ∅) |
160 | | ssxpb 6183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((0...𝐵) ×
(0...𝐵)) ≠ ∅
→ (((0...𝐵) ×
(0...𝐵)) ⊆
(ℕ0 × ℕ0) ↔ ((0...𝐵) ⊆ ℕ0
∧ (0...𝐵) ⊆
ℕ0))) |
161 | 159, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0) ↔ ((0...𝐵) ⊆ ℕ0 ∧
(0...𝐵) ⊆
ℕ0))) |
162 | 130, 161 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) |
163 | | ovelimab 7605 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))) |
164 | 129, 162,
163 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐽 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜))) |
165 | 127, 164 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)) |
166 | 123, 165 | r19.29vva 3211 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
167 | 20 | crngringd 20193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ Ring) |
168 | | aks6d1c2.24 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑋 = (var1‘𝐾) |
169 | 168, 16, 18 | vr1cl 22143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ Ring → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
170 | 167, 169 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
171 | 77, 18 | mgpbas 20087 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(mulGrp‘(Poly1‘𝐾))) |
172 | 171 | eqcomi 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(mulGrp‘(Poly1‘𝐾))) =
(Base‘(Poly1‘𝐾)) |
173 | 172 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈
(Base‘(mulGrp‘(Poly1‘𝐾))) ↔ 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
174 | 170, 173 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
175 | 73, 74, 80, 166, 174 | mulgnn0cld 19057 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
176 | 175, 171 | eleqtrrdi 2840 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
177 | 176 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
178 | 170 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝑋 ∈
(Base‘(Poly1‘𝐾))) |
179 | 15, 168, 17, 16, 18, 21, 72 | evl1vard 22263 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠))) |
180 | 179 | simprd 494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠)) |
181 | 178, 180 | jca 510 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝑋 ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘𝑋)‘(𝐻‘𝑠)) = (𝐻‘𝑠))) |
182 | 166 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐽 ∈
ℕ0) |
183 | 15, 16, 17, 18, 21, 72, 181, 74, 36, 182 | evl1expd 22271 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)))) |
184 | 183 | simprd 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
185 | 29 | oveq2d 7442 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
186 | 19 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐾 ∈ Field) |
187 | 47 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈ ℙ) |
188 | 34 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑅 ∈ ℕ) |
189 | 50 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑁 ∈ ℕ) |
190 | 52 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∥ 𝑁) |
191 | 54 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 gcd 𝑅) = 1) |
192 | | aks6d1c2.9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
193 | 192 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐹:(0...𝐴)⟶ℕ0) |
194 | 59 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐴 ∈
ℕ0) |
195 | 64 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
196 | 66 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
197 | 30 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
198 | | aks6d1c2.20 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 ∈ 𝐶) |
199 | 198 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈ 𝐶) |
200 | 124 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 ∈ 𝐶) |
201 | | aks6d1c2.22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 < 𝐽) |
202 | 201 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 < 𝐽) |
203 | | aks6d1c2.26 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑈 ∈ ℕ) |
204 | 203 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑈 ∈ ℕ) |
205 | | aks6d1c2.27 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 = (𝐼 + (𝑈 · 𝑅))) |
206 | 205 | ad7antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝐼 + (𝑈 · 𝑅))) |
207 | 27 | ad6antr 734 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
208 | | simp-6r 786 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑟 ∈ (0...𝐵)) |
209 | | simp-5r 784 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑜 ∈ (0...𝐵)) |
210 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐽 = (𝑟𝐸𝑜)) |
211 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ (0...𝐵)) |
212 | | simplr 767 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ (0...𝐵)) |
213 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞)) |
214 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = (𝑝𝐸𝑞)) |
215 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
216 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑘 = 𝑝) |
217 | 216 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → (𝑃↑𝑘) = (𝑃↑𝑝)) |
218 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → 𝑙 = 𝑞) |
219 | 218 | oveq2d 7442 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑞)) |
220 | 217, 219 | oveq12d 7444 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) ∧ (𝑘 = 𝑝 ∧ 𝑙 = 𝑞)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
221 | 90 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑝 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0) |
222 | 221 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑝 ∈ ℕ0) |
223 | 222 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑝 ∈ ℕ0) |
224 | 89 | sseli 3978 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 ∈ (0...𝐵) → 𝑞 ∈ ℕ0) |
225 | 224 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → 𝑞 ∈ ℕ0) |
226 | 225 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑞 ∈ ℕ0) |
227 | | ovexd 7461 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈ V) |
228 | 215, 220,
223, 226, 227 | ovmpod 7579 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑝𝐸𝑞) = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
229 | 214, 228 | eqtrd 2768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 = ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞))) |
230 | 99 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝑃 ∈
ℕ0) |
231 | 230, 223 | nn0expcld 14248 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑃↑𝑝) ∈
ℕ0) |
232 | 116 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈
ℕ0) |
233 | 232 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝑁 / 𝑃) ∈
ℕ0) |
234 | 233, 226 | nn0expcld 14248 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑁 / 𝑃)↑𝑞) ∈
ℕ0) |
235 | 231, 234 | nn0mulcld 12575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → ((𝑃↑𝑝) · ((𝑁 / 𝑃)↑𝑞)) ∈
ℕ0) |
236 | 229, 235 | eqeltrd 2829 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈
ℕ0) |
237 | 198, 126 | eleqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵)))) |
238 | | ovelimab 7605 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ ((0...𝐵) × (0...𝐵)) ⊆ (ℕ0 ×
ℕ0)) → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))) |
239 | 129, 162,
238 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐼 ∈ (𝐸 “ ((0...𝐵) × (0...𝐵))) ↔ ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞))) |
240 | 237, 239 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)) |
241 | 236, 240 | r19.29vva 3211 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
242 | 241 | adantr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐼 ∈
ℕ0) |
243 | 242 | ad6antr 734 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → 𝐼 ∈
ℕ0) |
244 | 44, 45, 186, 187, 188, 189, 190, 191, 193, 58, 194, 82, 133, 195, 196, 197, 7, 131, 125, 199, 200, 202, 74, 168, 11, 204, 206, 207, 208, 209, 210, 211, 212, 213, 243 | aks6d1c2lem3 41629 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) ∧ 𝑝 ∈ (0...𝐵)) ∧ 𝑞 ∈ (0...𝐵)) ∧ 𝐼 = (𝑝𝐸𝑞)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
245 | 240 | ad4antr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → ∃𝑝 ∈ (0...𝐵)∃𝑞 ∈ (0...𝐵)𝐼 = (𝑝𝐸𝑞)) |
246 | 244, 245 | r19.29vva 3211 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
247 | 165 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ∃𝑟 ∈ (0...𝐵)∃𝑜 ∈ (0...𝐵)𝐽 = (𝑟𝐸𝑜)) |
248 | 246, 247 | r19.29vva 3211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀))) |
249 | 29 | eqcomd 2734 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀) = (𝐻‘𝑠)) |
250 | 249 | oveq2d 7442 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘(𝐺‘𝑠))‘𝑀)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
251 | 185, 248,
250 | 3eqtrd 2772 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐽(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
252 | 15, 16, 17, 18, 21, 72, 181, 74, 36, 242 | evl1expd 22271 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)))) |
253 | 252 | simprd 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠))) |
254 | 253 | eqcomd 2734 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼(.g‘(mulGrp‘𝐾))(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
255 | 184, 251,
254 | 3eqtrd 2772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
256 | 177, 255 | jca 510 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐽 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
257 | 73, 74, 80, 241, 174 | mulgnn0cld 19057 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
258 | 171 | eleq2i 2821 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ↔ (𝐼 ↑ 𝑋) ∈
(Base‘(mulGrp‘(Poly1‘𝐾)))) |
259 | 257, 258 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
260 | 259 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) |
261 | | eqidd 2729 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) |
262 | 260, 261 | jca 510 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) = (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
263 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(-g‘(Poly1‘𝐾)) =
(-g‘(Poly1‘𝐾)) |
264 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(-g‘𝐾) = (-g‘𝐾) |
265 | 15, 16, 17, 18, 21, 72, 256, 262, 263, 264 | evl1subd 22268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾)) ∧
(((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))))) |
266 | 265 | simprd 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)))) |
267 | 21 | crnggrpd 20194 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → 𝐾 ∈ Grp) |
268 | 15, 16, 17, 18, 21, 72, 260 | fveval1fvcl 22259 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) ∈ (Base‘𝐾)) |
269 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐾) = (0g‘𝐾) |
270 | 17, 269, 264 | grpsubid 18987 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Grp ∧
(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠)) ∈ (Base‘𝐾)) → ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) = (0g‘𝐾)) |
271 | 267, 268,
270 | syl2anc 582 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))(-g‘𝐾)(((eval1‘𝐾)‘(𝐼 ↑ 𝑋))‘(𝐻‘𝑠))) = (0g‘𝐾)) |
272 | 266, 271 | eqtrd 2768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))‘(𝐻‘𝑠)) = (0g‘𝐾)) |
273 | 14, 272 | eqtrd 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾)) |
274 | | fvexd 6917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ V) |
275 | | elsng 4646 |
. . . . . . . . . 10
⊢
((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ V →
((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔
(((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾))) |
276 | 274, 275 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔
(((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) = (0g‘𝐾))) |
277 | 273, 276 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)}) |
278 | 76 | crnggrpd 20194 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Grp) |
279 | 18, 263 | grpsubcl 18983 |
. . . . . . . . . . . . . . . . 17
⊢
(((Poly1‘𝐾) ∈ Grp ∧ (𝐽 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾)) ∧ (𝐼 ↑ 𝑋) ∈
(Base‘(Poly1‘𝐾))) → ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾))) |
280 | 278, 176,
259, 279 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)) ∈ (Base‘(Poly1‘𝐾))) |
281 | 11, 280 | eqeltrid 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈
(Base‘(Poly1‘𝐾))) |
282 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ↑s
(Base‘𝐾)) = (𝐾 ↑s
(Base‘𝐾)) |
283 | 15, 16, 282, 17 | evl1rhm 22258 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ CRing →
(eval1‘𝐾)
∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾)))) |
284 | 20, 283 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(eval1‘𝐾)
∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾)))) |
285 | | eqid 2728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(𝐾
↑s (Base‘𝐾))) = (Base‘(𝐾 ↑s (Base‘𝐾))) |
286 | 18, 285 | rhmf 20431 |
. . . . . . . . . . . . . . . . . 18
⊢
((eval1‘𝐾) ∈ ((Poly1‘𝐾) RingHom (𝐾 ↑s (Base‘𝐾))) →
(eval1‘𝐾):(Base‘(Poly1‘𝐾))⟶(Base‘(𝐾 ↑s
(Base‘𝐾)))) |
287 | 284, 286 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(eval1‘𝐾):(Base‘(Poly1‘𝐾))⟶(Base‘(𝐾 ↑s
(Base‘𝐾)))) |
288 | 287 | ffvelcdmda 7099 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑆 ∈
(Base‘(Poly1‘𝐾))) → ((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾)))) |
289 | 288 | ex 411 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 ∈
(Base‘(Poly1‘𝐾)) → ((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾))))) |
290 | 281, 289 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ (Base‘(𝐾 ↑s (Base‘𝐾)))) |
291 | | fvexd 6917 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Base‘𝐾) ∈ V) |
292 | 282, 17 | pwsbas 17476 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Field ∧
(Base‘𝐾) ∈ V)
→ ((Base‘𝐾)
↑m (Base‘𝐾)) = (Base‘(𝐾 ↑s (Base‘𝐾)))) |
293 | 19, 291, 292 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((Base‘𝐾) ↑m
(Base‘𝐾)) =
(Base‘(𝐾
↑s (Base‘𝐾)))) |
294 | 290, 293 | eleqtrrd 2832 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾))) |
295 | 291, 291 | elmapd 8865 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(((eval1‘𝐾)‘𝑆) ∈ ((Base‘𝐾) ↑m (Base‘𝐾)) ↔
((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾))) |
296 | 294, 295 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾)) |
297 | | ffn 6727 |
. . . . . . . . . . . 12
⊢
(((eval1‘𝐾)‘𝑆):(Base‘𝐾)⟶(Base‘𝐾) → ((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
298 | 296, 297 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
299 | 298 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾)) |
300 | | fnfun 6659 |
. . . . . . . . . 10
⊢
(((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾) → Fun ((eval1‘𝐾)‘𝑆)) |
301 | 299, 300 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → Fun
((eval1‘𝐾)‘𝑆)) |
302 | | fndm 6662 |
. . . . . . . . . . . 12
⊢
(((eval1‘𝐾)‘𝑆) Fn (Base‘𝐾) → dom ((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
303 | 298, 302 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom
((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
304 | 303 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → dom
((eval1‘𝐾)‘𝑆) = (Base‘𝐾)) |
305 | 72, 304 | eleqtrrd 2832 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ dom ((eval1‘𝐾)‘𝑆)) |
306 | | fvimacnv 7067 |
. . . . . . . . 9
⊢ ((Fun
((eval1‘𝐾)‘𝑆) ∧ (𝐻‘𝑠) ∈ dom ((eval1‘𝐾)‘𝑆)) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔ (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
307 | 301, 305,
306 | syl2anc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → ((((eval1‘𝐾)‘𝑆)‘(𝐻‘𝑠)) ∈ {(0g‘𝐾)} ↔ (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
308 | 277, 307 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))) → (𝐻‘𝑠) ∈ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) |
309 | 5, 10, 308 | funimassd 6970 |
. . . . . 6
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ⊆ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) |
310 | 4, 309 | ssexd 5328 |
. . . . 5
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V) |
311 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 = ((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) |
312 | 311 | fveq2d 6906 |
. . . . . . . . . 10
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) = (( deg1
‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋)))) |
313 | | eqid 2728 |
. . . . . . . . . . 11
⊢ (
deg1 ‘𝐾) =
( deg1 ‘𝐾) |
314 | | isfld 20642 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
315 | 314 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ Field → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
316 | 315 | simpld 493 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Field → 𝐾 ∈
DivRing) |
317 | | drngnzr 20651 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) |
318 | 316, 317 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ Field → 𝐾 ∈ NzRing) |
319 | 19, 318 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ NzRing) |
320 | 313, 16, 168, 77, 74 | deg1pw 26076 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ NzRing ∧ 𝐼 ∈ ℕ0)
→ (( deg1 ‘𝐾)‘(𝐼 ↑ 𝑋)) = 𝐼) |
321 | 319, 241,
320 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝐼 ↑ 𝑋)) = 𝐼) |
322 | 321 | eqcomd 2734 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 = (( deg1 ‘𝐾)‘(𝐼 ↑ 𝑋))) |
323 | 313, 16, 168, 77, 74 | deg1pw 26076 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ NzRing ∧ 𝐽 ∈ ℕ0)
→ (( deg1 ‘𝐾)‘(𝐽 ↑ 𝑋)) = 𝐽) |
324 | 319, 166,
323 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝐽 ↑ 𝑋)) = 𝐽) |
325 | 324 | eqcomd 2734 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = (( deg1 ‘𝐾)‘(𝐽 ↑ 𝑋))) |
326 | 201, 322,
325 | 3brtr3d 5183 |
. . . . . . . . . . 11
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝐼 ↑ 𝑋)) < (( deg1 ‘𝐾)‘(𝐽 ↑ 𝑋))) |
327 | 16, 313, 167, 18, 263, 176, 259, 326 | deg1sub 26064 |
. . . . . . . . . 10
⊢ (𝜑 → (( deg1
‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) = (( deg1 ‘𝐾)‘(𝐽 ↑ 𝑋))) |
328 | 312, 327 | eqtrd 2768 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) = (( deg1
‘𝐾)‘(𝐽 ↑ 𝑋))) |
329 | 328, 324 | eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) = 𝐽) |
330 | 329, 166 | eqeltrd 2829 |
. . . . . . 7
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) ∈
ℕ0) |
331 | | eqid 2728 |
. . . . . . . 8
⊢
(0g‘(Poly1‘𝐾)) =
(0g‘(Poly1‘𝐾)) |
332 | | fldidom 21265 |
. . . . . . . . 9
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
333 | 19, 332 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ IDomn) |
334 | 313, 16, 331, 18 | deg1nn0clb 26046 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Ring ∧ 𝑆 ∈
(Base‘(Poly1‘𝐾))) → (𝑆 ≠
(0g‘(Poly1‘𝐾)) ↔ (( deg1 ‘𝐾)‘𝑆) ∈
ℕ0)) |
335 | 167, 281,
334 | syl2anc 582 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ≠
(0g‘(Poly1‘𝐾)) ↔ (( deg1 ‘𝐾)‘𝑆) ∈
ℕ0)) |
336 | 330, 335 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ≠
(0g‘(Poly1‘𝐾))) |
337 | 16, 18, 313, 15, 269, 331, 333, 281, 336 | fta1g 26124 |
. . . . . . 7
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤ (( deg1
‘𝐾)‘𝑆)) |
338 | | hashbnd 14335 |
. . . . . . 7
⊢ (((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V ∧ ((
deg1 ‘𝐾)‘𝑆) ∈ ℕ0 ∧
(♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤ (( deg1
‘𝐾)‘𝑆)) → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin) |
339 | 4, 330, 337, 338 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 → (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin) |
340 | | hashcl 14355 |
. . . . . 6
⊢ ((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ Fin →
(♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℕ0) |
341 | 339, 340 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℕ0) |
342 | | hashss 14408 |
. . . . . 6
⊢ (((◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}) ∈ V ∧ (𝐻 “ (ℕ0
↑m (0...𝐴))) ⊆ (◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) →
(♯‘(𝐻 “
(ℕ0 ↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
343 | 4, 309, 342 | syl2anc 582 |
. . . . 5
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) |
344 | | hashbnd 14335 |
. . . . 5
⊢ (((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V ∧ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈ ℕ0
∧ (♯‘(𝐻
“ (ℕ0 ↑m (0...𝐴)))) ≤ (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)}))) → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin) |
345 | 310, 341,
343, 344 | syl3anc 1368 |
. . . 4
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin) |
346 | | hashcl 14355 |
. . . 4
⊢ ((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ Fin → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0) |
347 | 345, 346 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0) |
348 | 347 | nn0red 12571 |
. 2
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈ ℝ) |
349 | 341 | nn0red 12571 |
. 2
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ∈
ℝ) |
350 | 105, 148 | nn0expcld 14248 |
. . 3
⊢ (𝜑 → (𝑁↑𝐵) ∈
ℕ0) |
351 | 350 | nn0red 12571 |
. 2
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) |
352 | 166 | nn0red 12571 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℝ) |
353 | 324, 352 | eqeltrd 2829 |
. . . . 5
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝐽 ↑ 𝑋)) ∈ ℝ) |
354 | 327, 353 | eqeltrd 2829 |
. . . 4
⊢ (𝜑 → (( deg1
‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) ∈ ℝ) |
355 | 312, 354 | eqeltrd 2829 |
. . 3
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) ∈
ℝ) |
356 | 97 | nnred 12265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
357 | 47, 356 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ ℝ) |
358 | 357 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑃 ∈ ℝ) |
359 | 358 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℝ) |
360 | 359, 92 | reexpcld 14167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ∈ ℝ) |
361 | 110, 357,
104 | redivcld 12080 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℝ) |
362 | 361 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ) |
363 | 362 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℝ) |
364 | 363, 94 | reexpcld 14167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ∈ ℝ) |
365 | 360, 364 | remulcld 11282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ∈ ℝ) |
366 | 357, 148 | reexpcld 14167 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃↑𝐵) ∈ ℝ) |
367 | 366 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑃↑𝐵) ∈ ℝ) |
368 | 361, 148 | reexpcld 14167 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
369 | 368 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
370 | 367, 369 | remulcld 11282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ) |
371 | 370 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ∈ ℝ) |
372 | 110, 148 | reexpcld 14167 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁↑𝐵) ∈ ℝ) |
373 | 372 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → (𝑁↑𝐵) ∈ ℝ) |
374 | 373 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) ∈ ℝ) |
375 | 367 | adantr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝐵) ∈ ℝ) |
376 | 369 | adantr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝐵) ∈ ℝ) |
377 | | 0red 11255 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℝ) |
378 | | 1red 11253 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
379 | | 0le1 11775 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
1 |
380 | 379 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 1) |
381 | | prmgt1 16675 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
382 | 47, 381 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 < 𝑃) |
383 | 378, 357,
382 | ltled 11400 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝑃) |
384 | 377, 378,
357, 380, 383 | letrd 11409 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 𝑃) |
385 | 384 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 0 ≤ 𝑃) |
386 | 385 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ 𝑃) |
387 | 359, 92, 386 | expge0d 14168 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑃↑𝑟)) |
388 | 113 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃)) |
389 | 388 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ (𝑁 / 𝑃)) |
390 | 363, 94, 389 | expge0d 14168 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 0 ≤ ((𝑁 / 𝑃)↑𝑜)) |
391 | 98 | nnge1d 12298 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ 𝑃) |
392 | 391 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 1 ≤ 𝑃) |
393 | 392 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ 𝑃) |
394 | | elfzuz3 13538 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ (0...𝐵) → 𝐵 ∈ (ℤ≥‘𝑟)) |
395 | 394 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑟)) |
396 | 395 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑟)) |
397 | 359, 393,
396 | leexp2ad 14256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑃↑𝑟) ≤ (𝑃↑𝐵)) |
398 | 357 | recnd 11280 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℂ) |
399 | 398 | mullidd 11270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1 · 𝑃) = 𝑃) |
400 | 98 | nnzd 12623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ ℤ) |
401 | | dvdsle 16294 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁)) |
402 | 400, 50, 401 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 ∥ 𝑁 → 𝑃 ≤ 𝑁)) |
403 | 52, 402 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ≤ 𝑁) |
404 | 399, 403 | eqbrtrd 5174 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 · 𝑃) ≤ 𝑁) |
405 | 378, 110,
111 | lemuldivd 13105 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1 · 𝑃) ≤ 𝑁 ↔ 1 ≤ (𝑁 / 𝑃))) |
406 | 404, 405 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≤ (𝑁 / 𝑃)) |
407 | 406 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃)) |
408 | 407 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 1 ≤ (𝑁 / 𝑃)) |
409 | | elfzuz3 13538 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ (0...𝐵) → 𝐵 ∈ (ℤ≥‘𝑜)) |
410 | 409 | adantl 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈ (ℤ≥‘𝑜)) |
411 | 363, 408,
410 | leexp2ad 14256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑁 / 𝑃)↑𝑜) ≤ ((𝑁 / 𝑃)↑𝐵)) |
412 | 360, 375,
364, 376, 387, 390, 397, 411 | lemul12ad 12194 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵))) |
413 | 110 | recnd 11280 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℂ) |
414 | 413, 398,
104 | divcan2d 12030 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 · (𝑁 / 𝑃)) = 𝑁) |
415 | 414 | eqcomd 2734 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
416 | 415 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
417 | 416 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
418 | 417 | oveq1d 7441 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) = ((𝑃 · (𝑁 / 𝑃))↑𝐵)) |
419 | 359 | recnd 11280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝑃 ∈ ℂ) |
420 | 363 | recnd 11280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁 / 𝑃) ∈ ℂ) |
421 | 148 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → 𝐵 ∈
ℕ0) |
422 | 419, 420,
421 | mulexpd 14165 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃 · (𝑁 / 𝑃))↑𝐵) = ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵))) |
423 | 418, 422 | eqtr2d 2769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) = (𝑁↑𝐵)) |
424 | 374 | leidd 11818 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑁↑𝐵) ≤ (𝑁↑𝐵)) |
425 | 423, 424 | eqbrtrd 5174 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝐵) · ((𝑁 / 𝑃)↑𝐵)) ≤ (𝑁↑𝐵)) |
426 | 365, 371,
374, 412, 425 | letrd 11409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → ((𝑃↑𝑟) · ((𝑁 / 𝑃)↑𝑜)) ≤ (𝑁↑𝐵)) |
427 | 96, 426 | eqbrtrd 5174 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) → (𝑟𝐸𝑜) ≤ (𝑁↑𝐵)) |
428 | 427 | adantr 479 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → (𝑟𝐸𝑜) ≤ (𝑁↑𝐵)) |
429 | 81, 428 | eqbrtrd 5174 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (0...𝐵)) ∧ 𝑜 ∈ (0...𝐵)) ∧ 𝐽 = (𝑟𝐸𝑜)) → 𝐽 ≤ (𝑁↑𝐵)) |
430 | 429, 165 | r19.29vva 3211 |
. . . . . 6
⊢ (𝜑 → 𝐽 ≤ (𝑁↑𝐵)) |
431 | 324, 430 | eqbrtrd 5174 |
. . . . 5
⊢ (𝜑 → (( deg1
‘𝐾)‘(𝐽 ↑ 𝑋)) ≤ (𝑁↑𝐵)) |
432 | 327, 431 | eqbrtrd 5174 |
. . . 4
⊢ (𝜑 → (( deg1
‘𝐾)‘((𝐽 ↑ 𝑋)(-g‘(Poly1‘𝐾))(𝐼 ↑ 𝑋))) ≤ (𝑁↑𝐵)) |
433 | 312, 432 | eqbrtrd 5174 |
. . 3
⊢ (𝜑 → (( deg1
‘𝐾)‘𝑆) ≤ (𝑁↑𝐵)) |
434 | 349, 355,
351, 337, 433 | letrd 11409 |
. 2
⊢ (𝜑 → (♯‘(◡((eval1‘𝐾)‘𝑆) “ {(0g‘𝐾)})) ≤ (𝑁↑𝐵)) |
435 | 348, 349,
351, 343, 434 | letrd 11409 |
1
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) |