| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseqrdg0 | Structured version Visualization version GIF version | ||
| Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
| noseqrdg.3 | ⊢ (𝜑 → 𝑆 = ran 𝑅) |
| Ref | Expression |
|---|---|
| noseqrdg0 | ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . 4 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | noseqrdg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | noseqrdg.2 | . . . 4 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
| 6 | noseqrdg.3 | . . . 4 ⊢ (𝜑 → 𝑆 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | noseqrdgfn 28237 | . . 3 ⊢ (𝜑 → 𝑆 Fn 𝑍) |
| 8 | 7 | fnfund 6587 | . 2 ⊢ (𝜑 → Fun 𝑆) |
| 9 | frfnom 8360 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 10 | 5 | fneq1d 6579 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
| 11 | 9, 10 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
| 12 | peano1 7825 | . . . 4 ⊢ ∅ ∈ ω | |
| 13 | fnfvelrn 7019 | . . . 4 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 14 | 11, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 15 | 5 | fveq1d 6830 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅)) |
| 16 | opex 5407 | . . . . 5 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
| 17 | fr0g 8361 | . . . . 5 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
| 19 | 15, 18 | eqtr2di 2785 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = (𝑅‘∅)) |
| 20 | 14, 19, 6 | 3eltr4d 2848 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑆) |
| 21 | funopfv 6877 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
| 22 | 8, 20, 21 | sylc 65 | 1 ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 〈cop 4581 ↦ cmpt 5174 ran crn 5620 ↾ cres 5621 “ cima 5622 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ωcom 7802 reccrdg 8334 No csur 27579 1s c1s 27768 +s cadds 27903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-1s 27770 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 |
| This theorem is referenced by: seqs1 28241 |
| Copyright terms: Public domain | W3C validator |