![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noseqrdg0 | Structured version Visualization version GIF version |
Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
noseqrdg.3 | ⊢ (𝜑 → 𝑆 = ran 𝑅) |
Ref | Expression |
---|---|
noseqrdg0 | ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseq.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
2 | om2noseq.2 | . . . 4 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | om2noseq.3 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
4 | noseqrdg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | noseqrdg.2 | . . . 4 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
6 | noseqrdg.3 | . . . 4 ⊢ (𝜑 → 𝑆 = ran 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | noseqrdgfn 28276 | . . 3 ⊢ (𝜑 → 𝑆 Fn 𝑍) |
8 | 7 | fnfund 6652 | . 2 ⊢ (𝜑 → Fun 𝑆) |
9 | frfnom 8456 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
10 | 5 | fneq1d 6644 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
11 | 9, 10 | mpbiri 257 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
12 | peano1 7891 | . . . 4 ⊢ ∅ ∈ ω | |
13 | fnfvelrn 7085 | . . . 4 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
14 | 11, 12, 13 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
15 | 5 | fveq1d 6894 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅)) |
16 | opex 5462 | . . . . 5 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
17 | fr0g 8457 | . . . . 5 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
19 | 15, 18 | eqtr2di 2783 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = (𝑅‘∅)) |
20 | 14, 19, 6 | 3eltr4d 2841 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑆) |
21 | funopfv 6944 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
22 | 8, 20, 21 | sylc 65 | 1 ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3464 ∅c0 4324 〈cop 4631 ↦ cmpt 5228 ran crn 5675 ↾ cres 5676 “ cima 5677 Fun wfun 6539 Fn wfn 6540 ‘cfv 6545 (class class class)co 7415 ∈ cmpo 7417 ωcom 7867 reccrdg 8430 No csur 27665 1s c1s 27849 +s cadds 27969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-nadd 8687 df-no 27668 df-slt 27669 df-bday 27670 df-sle 27771 df-sslt 27807 df-scut 27809 df-0s 27850 df-1s 27851 df-made 27867 df-old 27868 df-left 27870 df-right 27871 df-norec2 27959 df-adds 27970 |
This theorem is referenced by: seqs1 28280 |
Copyright terms: Public domain | W3C validator |