MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noseqrdg0 Structured version   Visualization version   GIF version

Theorem noseqrdg0 28253
Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
noseqrdg.1 (𝜑𝐴𝑉)
noseqrdg.2 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
noseqrdg.3 (𝜑𝑆 = ran 𝑅)
Assertion
Ref Expression
noseqrdg0 (𝜑 → (𝑆𝐶) = 𝐴)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem noseqrdg0
StepHypRef Expression
1 om2noseq.1 . . . 4 (𝜑𝐶 No )
2 om2noseq.2 . . . 4 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . 4 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
4 noseqrdg.1 . . . 4 (𝜑𝐴𝑉)
5 noseqrdg.2 . . . 4 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω))
6 noseqrdg.3 . . . 4 (𝜑𝑆 = ran 𝑅)
71, 2, 3, 4, 5, 6noseqrdgfn 28252 . . 3 (𝜑𝑆 Fn 𝑍)
87fnfund 6639 . 2 (𝜑 → Fun 𝑆)
9 frfnom 8449 . . . . 5 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
105fneq1d 6631 . . . . 5 (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω))
119, 10mpbiri 258 . . . 4 (𝜑𝑅 Fn ω)
12 peano1 7884 . . . 4 ∅ ∈ ω
13 fnfvelrn 7070 . . . 4 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
1411, 12, 13sylancl 586 . . 3 (𝜑 → (𝑅‘∅) ∈ ran 𝑅)
155fveq1d 6878 . . . 4 (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅))
16 opex 5439 . . . . 5 𝐶, 𝐴⟩ ∈ V
17 fr0g 8450 . . . . 5 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
1816, 17ax-mp 5 . . . 4 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
1915, 18eqtr2di 2787 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ = (𝑅‘∅))
2014, 19, 63eltr4d 2849 . 2 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ 𝑆)
21 funopfv 6928 . 2 (Fun 𝑆 → (⟨𝐶, 𝐴⟩ ∈ 𝑆 → (𝑆𝐶) = 𝐴))
228, 20, 21sylc 65 1 (𝜑 → (𝑆𝐶) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cop 4607  cmpt 5201  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  reccrdg 8423   No csur 27603   1s c1s 27787   +s cadds 27918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec2 27908  df-adds 27919
This theorem is referenced by:  seqs1  28256
  Copyright terms: Public domain W3C validator