| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noseqrdg0 | Structured version Visualization version GIF version | ||
| Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
| noseqrdg.3 | ⊢ (𝜑 → 𝑆 = ran 𝑅) |
| Ref | Expression |
|---|---|
| noseqrdg0 | ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . 4 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | noseqrdg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | noseqrdg.2 | . . . 4 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
| 6 | noseqrdg.3 | . . . 4 ⊢ (𝜑 → 𝑆 = ran 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | noseqrdgfn 28223 | . . 3 ⊢ (𝜑 → 𝑆 Fn 𝑍) |
| 8 | 7 | fnfund 6587 | . 2 ⊢ (𝜑 → Fun 𝑆) |
| 9 | frfnom 8364 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 10 | 5 | fneq1d 6579 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
| 11 | 9, 10 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
| 12 | peano1 7829 | . . . 4 ⊢ ∅ ∈ ω | |
| 13 | fnfvelrn 7018 | . . . 4 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 14 | 11, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
| 15 | 5 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅)) |
| 16 | opex 5411 | . . . . 5 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
| 17 | fr0g 8365 | . . . . 5 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
| 19 | 15, 18 | eqtr2di 2781 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = (𝑅‘∅)) |
| 20 | 14, 19, 6 | 3eltr4d 2843 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑆) |
| 21 | funopfv 6876 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
| 22 | 8, 20, 21 | sylc 65 | 1 ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 〈cop 4585 ↦ cmpt 5176 ran crn 5624 ↾ cres 5625 “ cima 5626 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ωcom 7806 reccrdg 8338 No csur 27567 1s c1s 27755 +s cadds 27889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec2 27879 df-adds 27890 |
| This theorem is referenced by: seqs1 28227 |
| Copyright terms: Public domain | W3C validator |