![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noseqrdg0 | Structured version Visualization version GIF version |
Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
noseqrdg.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
noseqrdg.2 | ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) |
noseqrdg.3 | ⊢ (𝜑 → 𝑆 = ran 𝑅) |
Ref | Expression |
---|---|
noseqrdg0 | ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseq.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
2 | om2noseq.2 | . . . 4 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | om2noseq.3 | . . . 4 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
4 | noseqrdg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | noseqrdg.2 | . . . 4 ⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)) | |
6 | noseqrdg.3 | . . . 4 ⊢ (𝜑 → 𝑆 = ran 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | noseqrdgfn 28330 | . . 3 ⊢ (𝜑 → 𝑆 Fn 𝑍) |
8 | 7 | fnfund 6680 | . 2 ⊢ (𝜑 → Fun 𝑆) |
9 | frfnom 8491 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
10 | 5 | fneq1d 6672 | . . . . 5 ⊢ (𝜑 → (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω)) |
11 | 9, 10 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝑅 Fn ω) |
12 | peano1 7927 | . . . 4 ⊢ ∅ ∈ ω | |
13 | fnfvelrn 7114 | . . . 4 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
14 | 11, 12, 13 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝑅‘∅) ∈ ran 𝑅) |
15 | 5 | fveq1d 6922 | . . . 4 ⊢ (𝜑 → (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅)) |
16 | opex 5484 | . . . . 5 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
17 | fr0g 8492 | . . . . 5 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
19 | 15, 18 | eqtr2di 2797 | . . 3 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = (𝑅‘∅)) |
20 | 14, 19, 6 | 3eltr4d 2859 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐴〉 ∈ 𝑆) |
21 | funopfv 6972 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
22 | 8, 20, 21 | sylc 65 | 1 ⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 reccrdg 8465 No csur 27702 1s c1s 27886 +s cadds 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec2 28000 df-adds 28011 |
This theorem is referenced by: seqs1 28334 |
Copyright terms: Public domain | W3C validator |