Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqresfnbd Structured version   Visualization version   GIF version

Theorem eqresfnbd 42227
Description: Property of being the restriction of a function. Note that this is closer to funssres 6563 than fnssres 6644. (Contributed by SN, 11-Mar-2025.)
Hypotheses
Ref Expression
eqresfnbd.g (𝜑𝐹 Fn 𝐵)
eqresfnbd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
eqresfnbd (𝜑 → (𝑅 = (𝐹𝐴) ↔ (𝑅 Fn 𝐴𝑅𝐹)))

Proof of Theorem eqresfnbd
StepHypRef Expression
1 eqresfnbd.g . . . . 5 (𝜑𝐹 Fn 𝐵)
2 eqresfnbd.1 . . . . 5 (𝜑𝐴𝐵)
31, 2fnssresd 6645 . . . 4 (𝜑 → (𝐹𝐴) Fn 𝐴)
4 resss 5975 . . . 4 (𝐹𝐴) ⊆ 𝐹
53, 4jctir 520 . . 3 (𝜑 → ((𝐹𝐴) Fn 𝐴 ∧ (𝐹𝐴) ⊆ 𝐹))
6 fneq1 6612 . . . 4 (𝑅 = (𝐹𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹𝐴) Fn 𝐴))
7 sseq1 3975 . . . 4 (𝑅 = (𝐹𝐴) → (𝑅𝐹 ↔ (𝐹𝐴) ⊆ 𝐹))
86, 7anbi12d 632 . . 3 (𝑅 = (𝐹𝐴) → ((𝑅 Fn 𝐴𝑅𝐹) ↔ ((𝐹𝐴) Fn 𝐴 ∧ (𝐹𝐴) ⊆ 𝐹)))
95, 8syl5ibrcom 247 . 2 (𝜑 → (𝑅 = (𝐹𝐴) → (𝑅 Fn 𝐴𝑅𝐹)))
101fnfund 6622 . . . . 5 (𝜑 → Fun 𝐹)
1110adantr 480 . . . 4 ((𝜑𝑅 Fn 𝐴) → Fun 𝐹)
12 funssres 6563 . . . . . 6 ((Fun 𝐹𝑅𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅)
1312eqcomd 2736 . . . . 5 ((Fun 𝐹𝑅𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅))
14 fndm 6624 . . . . . . . 8 (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴)
1514adantl 481 . . . . . . 7 ((𝜑𝑅 Fn 𝐴) → dom 𝑅 = 𝐴)
1615reseq2d 5953 . . . . . 6 ((𝜑𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹𝐴))
1716eqeq2d 2741 . . . . 5 ((𝜑𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹𝐴)))
1813, 17imbitrid 244 . . . 4 ((𝜑𝑅 Fn 𝐴) → ((Fun 𝐹𝑅𝐹) → 𝑅 = (𝐹𝐴)))
1911, 18mpand 695 . . 3 ((𝜑𝑅 Fn 𝐴) → (𝑅𝐹𝑅 = (𝐹𝐴)))
2019expimpd 453 . 2 (𝜑 → ((𝑅 Fn 𝐴𝑅𝐹) → 𝑅 = (𝐹𝐴)))
219, 20impbid 212 1 (𝜑 → (𝑅 = (𝐹𝐴) ↔ (𝑅 Fn 𝐴𝑅𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3917  dom cdm 5641  cres 5643  Fun wfun 6508   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-fun 6516  df-fn 6517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator