| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqresfnbd | Structured version Visualization version GIF version | ||
| Description: Property of being the restriction of a function. Note that this is closer to funssres 6577 than fnssres 6658. (Contributed by SN, 11-Mar-2025.) |
| Ref | Expression |
|---|---|
| eqresfnbd.g | ⊢ (𝜑 → 𝐹 Fn 𝐵) |
| eqresfnbd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| eqresfnbd | ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqresfnbd.g | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐵) | |
| 2 | eqresfnbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | fnssresd 6659 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 4 | resss 5986 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 5 | 3, 4 | jctir 520 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹)) |
| 6 | fneq1 6626 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹 ↾ 𝐴) Fn 𝐴)) | |
| 7 | sseq1 3982 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 ⊆ 𝐹 ↔ (𝐹 ↾ 𝐴) ⊆ 𝐹)) | |
| 8 | 6, 7 | anbi12d 632 | . . 3 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹))) |
| 9 | 5, 8 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
| 10 | 1 | fnfund 6636 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → Fun 𝐹) |
| 12 | funssres 6577 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅) | |
| 13 | 12 | eqcomd 2740 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅)) |
| 14 | fndm 6638 | . . . . . . . 8 ⊢ (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴) | |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → dom 𝑅 = 𝐴) |
| 16 | 15 | reseq2d 5964 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹 ↾ 𝐴)) |
| 17 | 16 | eqeq2d 2745 | . . . . 5 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹 ↾ 𝐴))) |
| 18 | 13, 17 | imbitrid 244 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
| 19 | 11, 18 | mpand 695 | . . 3 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 ⊆ 𝐹 → 𝑅 = (𝐹 ↾ 𝐴))) |
| 20 | 19 | expimpd 453 | . 2 ⊢ (𝜑 → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
| 21 | 9, 20 | impbid 212 | 1 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊆ wss 3924 dom cdm 5652 ↾ cres 5654 Fun wfun 6522 Fn wfn 6523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-res 5664 df-fun 6530 df-fn 6531 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |