Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqresfnbd Structured version   Visualization version   GIF version

Theorem eqresfnbd 41513
Description: Property of being the restriction of a function. Note that this is closer to funssres 6582 than fnssres 6663. (Contributed by SN, 11-Mar-2025.)
Hypotheses
Ref Expression
eqresfnbd.g (𝜑𝐹 Fn 𝐵)
eqresfnbd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
eqresfnbd (𝜑 → (𝑅 = (𝐹𝐴) ↔ (𝑅 Fn 𝐴𝑅𝐹)))

Proof of Theorem eqresfnbd
StepHypRef Expression
1 eqresfnbd.g . . . . 5 (𝜑𝐹 Fn 𝐵)
2 eqresfnbd.1 . . . . 5 (𝜑𝐴𝐵)
31, 2fnssresd 6664 . . . 4 (𝜑 → (𝐹𝐴) Fn 𝐴)
4 resss 5996 . . . 4 (𝐹𝐴) ⊆ 𝐹
53, 4jctir 520 . . 3 (𝜑 → ((𝐹𝐴) Fn 𝐴 ∧ (𝐹𝐴) ⊆ 𝐹))
6 fneq1 6630 . . . 4 (𝑅 = (𝐹𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹𝐴) Fn 𝐴))
7 sseq1 3999 . . . 4 (𝑅 = (𝐹𝐴) → (𝑅𝐹 ↔ (𝐹𝐴) ⊆ 𝐹))
86, 7anbi12d 630 . . 3 (𝑅 = (𝐹𝐴) → ((𝑅 Fn 𝐴𝑅𝐹) ↔ ((𝐹𝐴) Fn 𝐴 ∧ (𝐹𝐴) ⊆ 𝐹)))
95, 8syl5ibrcom 246 . 2 (𝜑 → (𝑅 = (𝐹𝐴) → (𝑅 Fn 𝐴𝑅𝐹)))
101fnfund 6640 . . . . 5 (𝜑 → Fun 𝐹)
1110adantr 480 . . . 4 ((𝜑𝑅 Fn 𝐴) → Fun 𝐹)
12 funssres 6582 . . . . . 6 ((Fun 𝐹𝑅𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅)
1312eqcomd 2730 . . . . 5 ((Fun 𝐹𝑅𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅))
14 fndm 6642 . . . . . . . 8 (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴)
1514adantl 481 . . . . . . 7 ((𝜑𝑅 Fn 𝐴) → dom 𝑅 = 𝐴)
1615reseq2d 5971 . . . . . 6 ((𝜑𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹𝐴))
1716eqeq2d 2735 . . . . 5 ((𝜑𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹𝐴)))
1813, 17imbitrid 243 . . . 4 ((𝜑𝑅 Fn 𝐴) → ((Fun 𝐹𝑅𝐹) → 𝑅 = (𝐹𝐴)))
1911, 18mpand 692 . . 3 ((𝜑𝑅 Fn 𝐴) → (𝑅𝐹𝑅 = (𝐹𝐴)))
2019expimpd 453 . 2 (𝜑 → ((𝑅 Fn 𝐴𝑅𝐹) → 𝑅 = (𝐹𝐴)))
219, 20impbid 211 1 (𝜑 → (𝑅 = (𝐹𝐴) ↔ (𝑅 Fn 𝐴𝑅𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wss 3940  dom cdm 5666  cres 5668  Fun wfun 6527   Fn wfn 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-res 5678  df-fun 6535  df-fn 6536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator