![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqresfnbd | Structured version Visualization version GIF version |
Description: Property of being the restriction of a function. Note that this is closer to funssres 6593 than fnssres 6674. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
eqresfnbd.g | ⊢ (𝜑 → 𝐹 Fn 𝐵) |
eqresfnbd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
eqresfnbd | ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqresfnbd.g | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐵) | |
2 | eqresfnbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | fnssresd 6675 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) Fn 𝐴) |
4 | resss 6007 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
5 | 3, 4 | jctir 522 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹)) |
6 | fneq1 6641 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹 ↾ 𝐴) Fn 𝐴)) | |
7 | sseq1 4008 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 ⊆ 𝐹 ↔ (𝐹 ↾ 𝐴) ⊆ 𝐹)) | |
8 | 6, 7 | anbi12d 632 | . . 3 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹))) |
9 | 5, 8 | syl5ibrcom 246 | . 2 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
10 | 1 | fnfund 6651 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
11 | 10 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → Fun 𝐹) |
12 | funssres 6593 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅) | |
13 | 12 | eqcomd 2739 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅)) |
14 | fndm 6653 | . . . . . . . 8 ⊢ (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴) | |
15 | 14 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → dom 𝑅 = 𝐴) |
16 | 15 | reseq2d 5982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹 ↾ 𝐴)) |
17 | 16 | eqeq2d 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹 ↾ 𝐴))) |
18 | 13, 17 | imbitrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
19 | 11, 18 | mpand 694 | . . 3 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 ⊆ 𝐹 → 𝑅 = (𝐹 ↾ 𝐴))) |
20 | 19 | expimpd 455 | . 2 ⊢ (𝜑 → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
21 | 9, 20 | impbid 211 | 1 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊆ wss 3949 dom cdm 5677 ↾ cres 5679 Fun wfun 6538 Fn wfn 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-fun 6546 df-fn 6547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |