![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqresfnbd | Structured version Visualization version GIF version |
Description: Property of being the restriction of a function. Note that this is closer to funssres 6622 than fnssres 6703. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
eqresfnbd.g | ⊢ (𝜑 → 𝐹 Fn 𝐵) |
eqresfnbd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
eqresfnbd | ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqresfnbd.g | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐵) | |
2 | eqresfnbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | fnssresd 6704 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) Fn 𝐴) |
4 | resss 6031 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
5 | 3, 4 | jctir 520 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹)) |
6 | fneq1 6670 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹 ↾ 𝐴) Fn 𝐴)) | |
7 | sseq1 4034 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 ⊆ 𝐹 ↔ (𝐹 ↾ 𝐴) ⊆ 𝐹)) | |
8 | 6, 7 | anbi12d 631 | . . 3 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹))) |
9 | 5, 8 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
10 | 1 | fnfund 6680 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → Fun 𝐹) |
12 | funssres 6622 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅) | |
13 | 12 | eqcomd 2746 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅)) |
14 | fndm 6682 | . . . . . . . 8 ⊢ (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → dom 𝑅 = 𝐴) |
16 | 15 | reseq2d 6009 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹 ↾ 𝐴)) |
17 | 16 | eqeq2d 2751 | . . . . 5 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹 ↾ 𝐴))) |
18 | 13, 17 | imbitrid 244 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
19 | 11, 18 | mpand 694 | . . 3 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 ⊆ 𝐹 → 𝑅 = (𝐹 ↾ 𝐴))) |
20 | 19 | expimpd 453 | . 2 ⊢ (𝜑 → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
21 | 9, 20 | impbid 212 | 1 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |